Suppr超能文献

使用MaskFormers进行二次顶点重建。

Secondary vertex reconstruction with MaskFormers.

作者信息

Van Stroud Samuel, Pond Nikita, Hart Max, Barr Jackson, Rettie Sébastien, Facini Gabriel, Scanlon Timothy

机构信息

Centre for Data Intensive Science and Industry, University College London, London, UK.

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

出版信息

Eur Phys J C Part Fields. 2024;84(10):1020. doi: 10.1140/epjc/s10052-024-13374-5. Epub 2024 Oct 8.

Abstract

In high-energy particle collisions, the reconstruction of secondary vertices from heavy-flavour hadron decays is crucial for identifying and studying jets initiated by - or -quarks. Traditional methods, while effective, require extensive manual optimisation and struggle to perform consistently across wide regions of phase space. Meanwhile, recent advancements in machine learning have improved performance but are unable to fully reconstruct multiple vertices. In this work we propose a novel approach to secondary vertex reconstruction based on recent advancements in object detection and computer vision. Our method directly predicts the presence and properties of an arbitrary number of vertices in a single model. This approach overcomes the limitations of existing techniques. Applied to simulated proton-proton collision events, our approach demonstrates significant improvements in vertex finding efficiency, achieving a 10% improvement over an existing state-of-the-art method. Moreover, it enables vertex fitting, providing accurate estimates of key vertex properties such as transverse momentum, radial flight distance, and angular displacement from the jet axis. When integrated into a flavour tagging pipeline, our method yields a 50% improvement in light-jet rejection and a 15% improvement in -jet rejection at a -jet selection efficiency of 70%. These results demonstrate the potential of adapting advanced object detection techniques for particle physics, and pave the way for more powerful and flexible reconstruction tools in high-energy physics experiments.

摘要

在高能粒子碰撞中,从重味强子衰变中重建次级顶点对于识别和研究由b夸克或c夸克引发的喷注至关重要。传统方法虽然有效,但需要大量的人工优化,并且在相空间的广泛区域中难以始终如一地执行。与此同时,机器学习的最新进展提高了性能,但无法完全重建多个顶点。在这项工作中,我们基于目标检测和计算机视觉的最新进展,提出了一种新颖的次级顶点重建方法。我们的方法在单个模型中直接预测任意数量顶点的存在和属性。这种方法克服了现有技术的局限性。应用于模拟的质子-质子碰撞事件时,我们的方法在顶点寻找效率方面有显著提高,比现有的最先进方法提高了10%。此外,它还能进行顶点拟合,提供关键顶点属性的准确估计,如横向动量、径向飞行距离以及相对于喷注轴的角位移。当集成到味标记流程中时,我们的方法在轻喷注排除方面提高了50%,在b喷注排除方面提高了15%,同时b喷注选择效率为70%。这些结果证明了将先进的目标检测技术应用于粒子物理的潜力,并为高能物理实验中更强大、更灵活的重建工具铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/644f/11458685/1e9bf345bdd7/10052_2024_13374_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验