Ding Xuehao, Lee Dongsoo, Melander Joshua B, Ganguli Surya, Baccus Stephen A
Department of Applied Physics, Stanford University.
Neurosciences PhD Program, Stanford University.
bioRxiv. 2024 Oct 23:2024.09.26.615305. doi: 10.1101/2024.09.26.615305.
Sensory systems discriminate between stimuli to direct behavioral choices, a process governed by two distinct properties - neural sensitivity to specific stimuli, and neural variability that importantly includes correlations between neurons. Two questions that have received extensive investigation and debate are whether visual systems are optimized for natural scenes, and whether correlated neural variability contributes to this optimization. However, the lack of sufficient computational models has made these questions inaccessible in the context of the normal function of the visual system, which is to discriminate between natural stimuli. Here we take a direct approach to analyze discriminability under natural scenes for a population of salamander retinal ganglion cells using a model of the retinal neural code that captures both sensitivity and variability. Using methods of information geometry and generative machine learning, we analyzed the manifolds of natural stimuli and neural responses, finding that discriminability in the ganglion cell population adapts to enhance information transmission about natural scenes, in particular about localized motion. Contrary to previous proposals, correlated noise reduces information transmission and arises simply as a natural consequence of the shared circuitry that generates changing spatiotemporal visual sensitivity. These results address a long-standing debate as to the role of retinal correlations in the encoding of natural stimuli and reveal how the highly nonlinear receptive fields of the retina adapt dynamically to increase information transmission under natural scenes by performing the important ethological function of local motion discrimination.
感觉系统区分不同刺激以指导行为选择,这一过程受两种不同特性支配——神经对特定刺激的敏感性以及神经变异性,其中神经变异性重要地包括神经元之间的相关性。两个受到广泛研究和争论的问题是视觉系统是否针对自然场景进行了优化,以及相关的神经变异性是否有助于这种优化。然而,缺乏足够的计算模型使得在视觉系统正常功能(即区分自然刺激)的背景下无法探讨这些问题。在这里,我们采用直接的方法,使用一个既捕捉敏感性又捕捉变异性的视网膜神经编码模型,来分析一群蝾螈视网膜神经节细胞在自然场景下的可辨别性。利用信息几何和生成式机器学习方法,我们分析了自然刺激和神经反应的流形,发现神经节细胞群体中的可辨别性会进行适应性调整,以增强关于自然场景的信息传递,特别是关于局部运动的信息传递。与之前的观点相反,相关噪声会降低信息传递,并且仅仅是产生不断变化的时空视觉敏感性的共享电路的自然结果。这些结果解决了关于视网膜相关性在自然刺激编码中的作用的长期争论,并揭示了视网膜高度非线性的感受野如何通过执行局部运动辨别这一重要的行为学功能,在自然场景下动态适应以增加信息传递。