Graham Josh P, Castro Jose Gabriel, Werba Lisette C, Fardone Luke C, Francis Kevin P, Ramamurthi Anand, Layden Michael, McCarthy Helen O, Gonzalez-Fernandez Tomas
Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
Department of Orthopaedic Surgery, UCLA, Los Angeles, USA.
bioRxiv. 2024 Sep 23:2024.09.23.614499. doi: 10.1101/2024.09.23.614499.
CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. Viral vectors risk genomic integration and immunogenicity while non-viral delivery systems are challenging to adapt to different CRISPR cargos, and many are highly cytotoxic. The arginine-alanine-leucine-alanine (RALA) cell penetrating peptide is an amphiphilic peptide that self-assembles into nanoparticles through electrostatic interactions with negatively charged molecules before delivering them across the cell membrane. This system has been used to deliver DNAs, RNAs, and small anionic molecules to primary cells with lower cytotoxicity compared to alternative non-viral approaches. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA was able to effectively encapsulate and deliver CRISPR in DNA, RNA, and ribonucleic protein (RNP) formats to primary mesenchymal stem cells (MSCs). Comparisons between RALA and commercially available reagents revealed superior cell viability leading to higher numbers of transfected cells and the maintenance of cell proliferative capacity. We then used the RALA peptide for the knock-in and knock-out of reporter genes into the MSC genome as well as for the transcriptional activation of therapeutically relevant genes. In summary, we establish RALA as a powerful tool for safer and effective delivery of CRISPR machinery in multiple cargo formats for a wide range of gene editing strategies.
CRISPR基因编辑为精确调控细胞功能和表型提供了前所未有的基因组和转录组控制能力。然而,在不产生细胞毒性或意外副作用的情况下,将必要的CRISPR组件递送至具有治疗意义的细胞类型仍然具有挑战性。病毒载体存在基因组整合和免疫原性风险,而非病毒递送系统难以适应不同的CRISPR载荷,且许多具有高度细胞毒性。精氨酸-丙氨酸-亮氨酸-丙氨酸(RALA)细胞穿透肽是一种两亲性肽,在将带负电荷的分子递送至细胞膜之前,它会通过与这些分子的静电相互作用自组装成纳米颗粒。与其他非病毒方法相比,该系统已被用于将DNA、RNA和小阴离子分子递送至原代细胞,且细胞毒性较低。鉴于RALA的低细胞毒性、多功能性和具有竞争力的转染率,我们旨在将这种肽确立为一种新的CRISPR递送系统,用于多种不同编辑方式的分子形式。我们报告称,RALA能够有效地将DNA、RNA和核糖核蛋白(RNP)形式的CRISPR封装并递送至原代间充质干细胞(MSC)。RALA与市售试剂之间的比较显示,其细胞活力更高,导致转染细胞数量更多,并维持了细胞增殖能力。然后,我们使用RALA肽将报告基因敲入和敲除MSC基因组,以及对具有治疗意义的基因进行转录激活。总之,我们确立了RALA作为一种强大工具的地位,可用于以多种载荷形式更安全有效地递送CRISPR机制,以实现广泛的基因编辑策略。