Suppr超能文献

主动摩擦调节惯性冲击压电致动器

Active friction-regulated inertia impact piezoelectric actuator.

作者信息

Jin Zhipeng, Song Xin, Guo BaoShan

机构信息

Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.

出版信息

Heliyon. 2024 Sep 19;10(19):e37195. doi: 10.1016/j.heliyon.2024.e37195. eCollection 2024 Oct 15.

Abstract

In inertia impact piezoelectric actuators, the phenomenon of high-frequency drive-induced back-stepping poses a significant limitation to their overall performance. The ultra-fast response time of the piezoelectric stack enables the resolution of this issue. This paper introduces an inertia impact piezoelectric actuator operating under a novel Dual-Stack Motion Mode (DCMM), diverging from the traditional operation in the Single-Stack Motion Mode (STMM) that involves a solitary piezoelectric stack (PES) for active friction control. A comprehensive description of the actuator's structure and its operational principles under DCMM is provided. By constructing and experimentally evaluating the actuator using a controlled variable approach, a comparative analysis of performance between DCMM and STMM across various scenarios including different inertial mass blocks, driving voltages, frequencies, and load conditions was conducted. The experimental results indicate that DCMM significantly enhances the actuator's output performance, achieving a maximum speed of 1142.79 μm/s and a stable single-step displacement of 0.5 μm. The actuator features a simple yet effective structure and driving mechanism, allowing for multiple driving modes through the assembly of different inertial masses, thereby providing a substantial competitive advantage in output performance. The feasibility of using DCMM to improve actuator performance is corroborated by both theoretical and experimental studies. The ultra-fast response of the piezoelectric stacks expands the operational bandwidth of the actuator, achieving a seamless integration of speed and precision.

摘要

在惯性冲击压电致动器中,高频驱动引起的反向步进现象对其整体性能构成了重大限制。压电叠堆的超快响应时间使得能够解决这一问题。本文介绍了一种在新型双叠堆运动模式(DCMM)下运行的惯性冲击压电致动器,它不同于传统的单叠堆运动模式(STMM),传统模式中使用单个压电叠堆(PES)进行主动摩擦控制。文中对该致动器在DCMM下的结构及其工作原理进行了全面描述。通过采用控制变量法构建并对致动器进行实验评估,对DCMM和STMM在包括不同惯性质量块、驱动电压、频率和负载条件等各种情况下的性能进行了对比分析。实验结果表明,DCMM显著提高了致动器的输出性能,实现了最高速度1142.79μm/s和稳定的单步位移0.5μm。该致动器具有简单而有效的结构和驱动机制,通过组装不同的惯性质量可实现多种驱动模式,从而在输出性能方面具有显著的竞争优势。理论和实验研究均证实了使用DCMM提高致动器性能的可行性。压电叠堆的超快响应扩展了致动器的工作带宽,实现了速度和精度的无缝集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4556/11462231/acf19a1961b1/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验