Ji Hua-Wei, Lin Li-Ming, Liu Yu, Chen Zhe-Hao, Wu Xin, Ni Jing
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Rev Sci Instrum. 2024 Oct 1;95(10). doi: 10.1063/5.0217556.
Traditional piezoelectric stick-slip actuators often suffer from significant backward motion phenomena, which greatly impact their output performance. To overcome this issue, a novel displacement amplification piezoelectric stick-slip actuator was meticulously designed. It integrates an L-shaped displacement amplification mechanism with a parallelogram-compliant mechanism. By dynamically adjusting the compressive force between the stator and the mover, this actuator effectively increases the single-step displacement, resulting in smooth and stable motion output. The design process involved thorough structural feasibility validation and core dimension optimization, utilizing Castigliano's second theorem and finite element simulation analysis. These efforts successfully yielded a substantial increase in the single-step output displacement. Experimental results demonstrate the actuator's capability to achieve smooth and stable motion output, even under challenging conditions, such as symmetric excitation signals and horizontal loading. Under specific operating parameters-preloading force of 3 N, input voltage of 100 VP-P, and driving frequency of 625 Hz sinusoidal excitation signal, the actuator achieves an impressive maximum driving speed of 25.22 mm/s, with a substantial maximum load capacity of 2.1 N. Compared to previous studies, the designed actuator exhibits superior adaptability to various excitation signals, offering significant potential for enhancing the performance and expanding the applications of piezoelectric stick-slip actuators.
传统的压电式蠕动驱动器常常存在明显的反向运动现象,这极大地影响了它们的输出性能。为克服这一问题,精心设计了一种新型的位移放大压电式蠕动驱动器。它将一个L形位移放大机构与一个平行四边形柔性机构集成在一起。通过动态调节定子和动子之间的压力,该驱动器有效地增加了单步位移,从而实现了平稳且稳定的运动输出。设计过程涉及利用卡斯蒂利亚诺第二定理和有限元模拟分析进行全面的结构可行性验证和核心尺寸优化。这些努力成功地使单步输出位移大幅增加。实验结果表明,即使在诸如对称激励信号和水平负载等具有挑战性的条件下,该驱动器也能够实现平稳且稳定的运动输出。在特定的运行参数下——预紧力为3 N、输入电压为100 VP-P以及驱动频率为625 Hz的正弦激励信号,该驱动器实现了高达25.22 mm/s的令人印象深刻的最大驱动速度,以及2.1 N的可观最大负载能力。与先前的研究相比,所设计的驱动器对各种激励信号表现出卓越的适应性,为提升压电式蠕动驱动器的性能和拓展其应用提供了巨大潜力。