Suppr超能文献

基于人工智能的虚拟机选择:用蜻蜓算法提升云性能

AI-powered VM selection: Amplifying cloud performance with dragonfly algorithm.

作者信息

Rashmi Sindhu, Siwach Vikas, Sehrawat Harkesh, Brar Gurbinder Singh, Singla Jimmy, Jhanjhi N Z, Masud Mehedi, Shorfuzzaman Mohammad

机构信息

UIET, MDU Rohtak, India.

Lovely Professional University, Punjab, India.

出版信息

Heliyon. 2024 Sep 13;10(19):e37912. doi: 10.1016/j.heliyon.2024.e37912. eCollection 2024 Oct 15.

Abstract

The convenience and cost-effectiveness offered by cloud computing have attracted a large customer base. In a cloud environment, the inclusion of the concept of virtualization requires careful management of resource utilization and energy consumption. With a rapidly increasing consumer base of cloud data centers, it faces an overwhelming influx of Virtual Machine (VM) requests. In cloud computing technology, the mapping of these requests onto the actual cloud hardware is known as VM placement which is a significant area of research. The article presents the Dragonfly Algorithm integrated with Modified Best Fit Decreasing (DA-MBFD) is proposed to minimize the overall power consumption and the migration count. DA-MBFD uses MBFD for ranking VMs based on their resource requirement, then uses the Minimization of Migration (MM) algorithm for hotspot detection followed by DA to optimize the replacement of VMs from the overutilized hosts. DA-MBFD is compared with a few of the other existing techniques to show its efficiency. The comparative analysis of DA-MBFD against E-ABC, E-MBFD, and MBFD-MM shows %improvement reflecting a significant reduction in power consumption 8.21 %, 8.6 %, 6.77 %, violations in service level agreement from 9.25 %, 6.98 %-7.86 % and number of migrations 6.65 %, 8.92 %, 7.02 %, respectively.

摘要

云计算所提供的便利性和成本效益吸引了大量客户群体。在云环境中,虚拟化概念的引入需要对资源利用和能源消耗进行仔细管理。随着云数据中心的客户群体迅速增长,它面临着大量虚拟机(VM)请求的涌入。在云计算技术中,将这些请求映射到实际云硬件上被称为VM放置,这是一个重要的研究领域。本文提出了与改进的最佳适配递减算法相结合的蜻蜓算法(DA-MBFD),以最小化总体功耗和迁移次数。DA-MBFD使用MBFD根据虚拟机的资源需求对其进行排序,然后使用迁移最小化(MM)算法进行热点检测,接着使用DA优化从过度使用的主机中替换虚拟机。将DA-MBFD与其他一些现有技术进行比较以展示其效率。DA-MBFD与E-ABC、E-MBFD和MBFD-MM的对比分析显示,功耗分别降低了8.21%、8.6%、6.77%,服务水平协议违规率分别从9.25%、6.98%降至7.86%,迁移次数分别减少了6.65%、8.92%、7.02%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f8/11461988/59cabbac2fdd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验