Suppr超能文献

一种用于预测肝细胞癌预后、肿瘤微环境浸润及药物敏感性的糖异生相关基因模型

A Gluconeogenesis-Related Genes Model for Predicting Prognosis, Tumor Microenvironment Infiltration, and Drug Sensitivity in Hepatocellular Carcinoma.

作者信息

Tang Xilong, Xue Jianjin, Zhang Jie, Zhou Jiajia

机构信息

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.

Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2024 Oct 5;11:1907-1926. doi: 10.2147/JHC.S483664. eCollection 2024.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is a prevalent malignancy within the digestive system, known for its poor prognosis. Gluconeogenesis, a critical metabolic pathway, is responsible for the synthesis of glucose in the normal liver. This study aimed to examine the role of gluconeogenesis-related genes (GRGs) in HCC and evaluate their impact on the tumor microenvironment infiltration and drug sensitivity in HCC.

METHODS

We retrieved gene expression and clinical pathological data of HCC from The Cancer Genome Atlas (TCGA) database. This dataset was utilized to develop a prognosis model. The data from The International Cancer Genome Consortium (ICGC) served as an independent validation cohort. A least absolute shrinkage and selection operator (LASSO) regression analysis was applied to a curated panel of GRGs to construct and validate the predictive model. Furthermore, unsupervised consensus clustering, based on the expression levels of GRGs, categorized HCC patients into distinct subgroups.

RESULTS

A four-gene prognostic model, referred to as GRGs, has been successfully developed with high accuracy and stability for the prediction of HCC patient prognosis. This model enables the stratification of patients into high or low risk groups based on individual risk scores, revealing significant differences in immune infiltration patterns and anti-tumor drug responses. Unsupervised consensus clustering analysis delineated four distinct subgroups of patients, each characterized by a unique prognosis and tumor immune microenvironment (TIME).

CONCLUSION

This study is the first to develop a prognostic model incorporating 4-GRGs that effectively predicts the prognosis, tumor microenvironment infiltration, and drug sensitivity in HCC patients. The model based on 4 GRGs may contribute to predict the prognosis, immunotherapy and chemotherapy response of HCC patients.

摘要

背景

肝细胞癌(HCC)是消化系统中一种常见的恶性肿瘤,预后较差。糖异生是一种关键的代谢途径,负责正常肝脏中葡萄糖的合成。本研究旨在探讨糖异生相关基因(GRGs)在HCC中的作用,并评估其对HCC肿瘤微环境浸润和药物敏感性的影响。

方法

我们从癌症基因组图谱(TCGA)数据库中检索了HCC的基因表达和临床病理数据。该数据集用于建立预后模型。国际癌症基因组联盟(ICGC)的数据作为独立验证队列。对一组精心挑选的GRGs应用最小绝对收缩和选择算子(LASSO)回归分析来构建和验证预测模型。此外,基于GRGs的表达水平进行无监督一致性聚类,将HCC患者分为不同亚组。

结果

成功开发了一种名为GRGs的四基因预后模型,用于预测HCC患者预后具有较高的准确性和稳定性。该模型能够根据个体风险评分将患者分为高风险或低风险组,揭示免疫浸润模式和抗肿瘤药物反应的显著差异。无监督一致性聚类分析确定了四个不同的患者亚组,每个亚组具有独特的预后和肿瘤免疫微环境(TIME)。

结论

本研究首次开发了一种包含4个GRGs的预后模型,可有效预测HCC患者的预后、肿瘤微环境浸润和药物敏感性。基于4个GRGs的模型可能有助于预测HCC患者的预后、免疫治疗和化疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab6/11463187/e7a8701e7ca7/JHC-11-1907-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验