Suppr超能文献

Shh+ 基板细胞的谱系追踪及再生蝾螈脊髓中背腹基因表达的动力学

Lineage tracing of Shh+ floor plate cells and dynamics of dorsal-ventral gene expression in the regenerating axolotl spinal cord.

机构信息

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.

Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.

出版信息

Dev Growth Differ. 2024 Oct;66(8):414-425. doi: 10.1111/dgd.12945. Epub 2024 Oct 10.

Abstract

Both development and regeneration depend on signaling centers, which are sources of locally secreted tissue-patterning molecules. As many signaling centers are decommissioned before the end of embryogenesis, a fundamental question is how signaling centers can be re-induced later in life to promote regeneration after injury. Here, we use the axolotl salamander model (Ambystoma mexicanum) to address how the floor plate is assembled for spinal cord regeneration. The floor plate is an archetypal vertebrate signaling center that secretes Shh ligand and patterns neural progenitor cells during embryogenesis. Unlike mammals, axolotls continue to express floor plate genes (including Shh) and downstream dorsal-ventral patterning genes in their spinal cord throughout life, including at steady state. The parsimonious hypothesis that Shh+ cells give rise to functional floor plate cells for regeneration had not been tested. Using HCR in situ hybridization and mathematical modeling, we first quantified the behaviors of dorsal-ventral spinal cord domains, identifying significant increases in gene expression level and floor plate size during regeneration. Next, we established a transgenic axolotl to specifically label and fate map Shh+ cells in vivo. We found that labeled Shh+ cells gave rise to regeneration floor plate, and not to other neural progenitor domains, after tail amputation. Thus, despite changes in domain size and downstream patterning gene expression, Shh+ cells retain their floor plate identity during regeneration, acting as a stable cellular source for this regeneration signaling center in the axolotl spinal cord.

摘要

发育和再生都依赖于信号中心,这些信号中心是局部分泌组织模式分子的来源。由于许多信号中心在胚胎发生结束前就已停用,因此一个基本问题是,信号中心如何在生命后期被重新诱导,以促进损伤后的再生。在这里,我们使用蝾螈模型(Ambystoma mexicanum)来解决脊髓再生过程中如何组装基板的问题。基板是典型的脊椎动物信号中心,在胚胎发生过程中分泌 Shh 配体并对神经祖细胞进行模式化。与哺乳动物不同,蝾螈在其整个生命周期(包括在稳态下)的脊髓中持续表达基板基因(包括 Shh)和下游背腹模式化基因。Shh+ 细胞是否会产生功能性基板细胞以促进再生,这一假设尚未得到检验。我们通过 HCR 原位杂交和数学建模首先量化了背腹脊髓区域的行为,鉴定出在再生过程中基因表达水平和基板大小显著增加。接下来,我们建立了一个转基因蝾螈,以在体内特异性标记和追踪 Shh+细胞。我们发现,标记的 Shh+细胞在尾巴切除后会产生再生基板,而不是其他神经祖细胞区域。因此,尽管在区域大小和下游模式化基因表达方面发生了变化,但 Shh+细胞在再生过程中保留了其基板身份,作为蝾螈脊髓中这个再生信号中心的稳定细胞来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验