Suppr超能文献

网络分析应用于乳腺癌女性相关疲劳维度。

Network Analyses Applied to the Dimensions of Cancer-Related Fatigue in Women With Breast Cancer.

机构信息

Epsylon Laboratory, University Paul Valéry Montpellier 3, Nîmes, France.

Biostatistics and Research Methods Centre, University Hospital and University of Liège, Liège, Belgium.

出版信息

Cancer Med. 2024 Oct;13(19):e70268. doi: 10.1002/cam4.70268.

Abstract

BACKGROUND

Understanding cancer symptom cluster through network analyses is a new approach in oncology, revealing interconnected and influential relationships among reported symptoms. We aimed to assess these relationships using network analysis in posttreatment breast cancer patients, focusing on the five dimensions of cancer-related fatigue (CRF), and on other common difficulties encountered by oncological patients (i.e., pain, anxiety, depression, sleep difficulties, cognitive impairments, and emotion regulation and mental adaptation difficulties).

METHOD

This study involved a complementary analysis of data from two interventional studies. Participants completed questionnaires before and after the intervention, with baseline scores being used in this article. Partial correlation network analysis modeled the relationships between symptoms in five distinct networks, each of them including one specific dimension of CRF. The core symptom in each network was identified based on the highest centrality indices.

RESULTS

Depression emerged as the core symptom in all networks, strongly associated with all fatigue dimensions (partial correlations ranging from 0.183 to 0.269) except mental fatigue. These findings indicate robust connections between symptoms, as variations in depression scores directly or indirectly influence fatigue and other symptoms within the cluster.

CONCLUSION

Our results support the multidimensional aspect of CRF, and its links with other common symptoms. To effectively reduce patient CRF, interventions should address not only fatigue but also the closely related symptoms from the cluster, such as depression, given its centrality in the cluster.

TRIAL REGISTRATION

ClinicalTrials.gov (NCT03144154 and NCT04873661). Retrospectively registered on May 1, 2017 and April 29, 2021, respectively.

摘要

背景

通过网络分析了解癌症症状群是肿瘤学中的一种新方法,揭示了报告的症状之间相互关联和影响的关系。我们旨在使用网络分析评估治疗后乳腺癌患者的这些关系,重点关注癌症相关疲劳(CRF)的五个维度,以及肿瘤患者经常遇到的其他常见困难(即疼痛、焦虑、抑郁、睡眠困难、认知障碍以及情绪调节和心理适应困难)。

方法

本研究对两项干预性研究的数据进行了补充分析。参与者在干预前后完成了问卷,本文使用了基线评分。偏相关网络分析对五个不同网络中的症状之间的关系进行建模,每个网络都包含 CRF 的一个特定维度。根据中心度指数最高的原则,确定每个网络中的核心症状。

结果

抑郁在所有网络中都是核心症状,与所有疲劳维度(偏相关系数范围为 0.183 至 0.269)强烈相关,除了心理疲劳。这些发现表明症状之间存在稳健的联系,因为抑郁评分的变化直接或间接地影响了疲劳和集群中的其他症状。

结论

我们的结果支持 CRF 的多维性及其与其他常见症状的联系。为了有效降低患者的 CRF,干预措施不仅应针对疲劳,还应针对集群中密切相关的症状,如抑郁,因为抑郁在集群中处于中心位置。

试验注册

ClinicalTrials.gov(NCT03144154 和 NCT04873661)。分别于 2017 年 5 月 1 日和 2021 年 4 月 29 日回顾性注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/083f/11465027/a3070e7ceb1b/CAM4-13-e70268-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验