Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.
Microbiol Spectr. 2024 Nov 5;12(11):e0048524. doi: 10.1128/spectrum.00485-24. Epub 2024 Oct 10.
Carbon catabolite repression (CCR) is a widely conserved regulatory process that ensures enzymes and transporters of less-preferred carbohydrates are transcriptionally repressed in the presence of a preferred carbohydrate. This phenomenon can be regulated via a CcpA-dependent or CcpA-independent mechanism. The CcpA-independent mechanism typically requires a transcriptional regulator harboring a phosphotransferase regulatory domain (PRD) that interacts with phosphoransferase ystem (PTS) components. PRDs contain a conserved histidine residue that is phosphorylated by the PTS-associated HPr-His15~P protein. PRD-containing regulators often harbor additional domains that resemble PTS-associated EIIB protein domains with a conserved cysteine residue that can be phosphorylated by cognate PTS components. We noted that Mga, the PRD-containing central virulence regulator of , has an EIIB domain containing a cysteine that, based on the presence of a similar motif in glycerol kinase, could be a target for phosphorylation. Using site-directed mutagenesis, we constructed phospho-ablative and phospho-mimetic substitutions of this cysteine and found that these substitutions modify the CCR of the Rgg2/3 quorum-sensing system. Moreover, we provide genetic evidence that the phospho-donor of this cysteine residue is likely to be ManL, the EIIA/B subunit of the mannose PTS system. Interestingly, a structurally distinct virulence gene regulator, PrfA of , harbors a similar cysteine-containing motif, and phospho-ablative and phospho-mimetic substitutions of the cysteine-altered CCR of PrfA-dependent virulence gene expression. Collectively, our data suggest that phosphorylation of a cysteine within the shared novel motif in Mga and PrfA may be a heretofore missing link between cellular metabolism and virulence.IMPORTANCEIn this study, we identified a novel cysteine-containing motif within the amino acid sequence of two structurally distinct transcriptional regulators of virulence in two Gram-positive pathogens that appears to link carbon metabolism with virulence gene expression. The results also highlight the potential post-translational modification of cysteine in bacterial species, a rare and understudied modification.
碳分解代谢物阻遏(CCR)是一种广泛保守的调控过程,它确保了在优先碳水化合物存在的情况下,较少优先碳水化合物的酶和转运蛋白的转录受到抑制。这种现象可以通过 CcpA 依赖性或 CcpA 非依赖性机制进行调节。CcpA 非依赖性机制通常需要一个转录调节剂,该调节剂具有磷酸转移酶调节域(PRD),该调节域与磷酸转移酶系统(PTS)组件相互作用。PRD 包含一个保守的组氨酸残基,该残基被 PTS 相关的 HPr-His15~P 蛋白磷酸化。含有 PRD 的调节剂通常还含有其他类似 PTS 相关 EIIB 蛋白域的结构域,该结构域含有一个保守的半胱氨酸残基,可以被同源 PTS 组件磷酸化。我们注意到,Mga 是 的 PRD 含量丰富的中央毒力调节剂,它含有一个 EIIB 结构域,其中含有一个半胱氨酸残基,根据甘油激酶中存在类似的基序,该残基可能是磷酸化的靶标。通过定点突变,我们构建了该半胱氨酸的磷酸化缺失和磷酸化模拟取代,并发现这些取代修饰了 Rgg2/3 群体感应系统的 CCR。此外,我们提供了遗传证据表明,该半胱氨酸残基的磷酸供体可能是 ManL,即甘露糖 PTS 系统的 EIIA/B 亚基。有趣的是,结构上不同的毒力基因调节剂 PrfA 也含有一个类似的含有半胱氨酸的基序,而磷酸化缺失和磷酸化模拟取代改变了 PrfA 依赖性毒力基因表达的 CCR。总的来说,我们的数据表明,Mga 和 PrfA 中共享的新基序内半胱氨酸的磷酸化可能是细胞代谢与毒力之间缺失的联系。
重要性
在这项研究中,我们在两种革兰氏阳性病原体中两种结构不同的毒力基因转录调节剂的氨基酸序列中鉴定出一个新的含有半胱氨酸的基序,该基序似乎将碳代谢与毒力基因表达联系起来。研究结果还强调了细菌中半胱氨酸的潜在翻译后修饰,这是一种罕见且研究不足的修饰。