Suppr超能文献

用于确定多维时间序列中领导-跟随关系的滞后多维递归量化分析。

Lagged multidimensional recurrence quantification analysis for determining leader-follower relationships within multidimensional time series.

作者信息

Tomashin Alon, Gordon Ilanit, Leonardi Giuseppe, Berson Yair, Milstein Nir, Ziegler Matthias, Hess Ursula, Wallot Sebastian

机构信息

Gonda Multidisciplinary Brain Research Center, Bar-Ilan University.

Department of Psychology, University of Economics and Human Sciences at Warsaw.

出版信息

Psychol Methods. 2024 Oct 10. doi: 10.1037/met0000691.

Abstract

The current article introduces lagged multidimensional recurrence quantification analysis. The method is an extension of multidimensional recurrence quantification analysis and allows to quantify the joint dynamics of multivariate time series and to investigate leader-follower relationships in behavioral and physiological data. Moreover, the method enables the quantification of the joint dynamics of a group, when such leader-follower relationships are taken into account. We first provide a formal presentation of the method, and then apply it to synthetic data, as well as data sets from joint action research, investigating the shared dynamics of facial expression and beats-per-minute recordings within different groups. A wrapper function is included, for applying the method together with the "crqa" package in R. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

本文介绍了滞后多维递归量化分析。该方法是多维递归量化分析的扩展,可用于量化多元时间序列的联合动态,并研究行为和生理数据中的主从关系。此外,当考虑到这种主从关系时,该方法还能够量化一组数据的联合动态。我们首先对该方法进行形式化介绍,然后将其应用于合成数据以及联合行动研究的数据集,研究不同组内面部表情和每分钟心跳记录的共享动态。文中包含一个包装函数,用于将该方法与R语言中的“crqa”包一起应用。(《心理学文摘数据库记录》(c)2025美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验