Sun Bo, Cheng Haoyan, Shi Changrui, Guan Jiangyi, Jiang Zhonghan, Ma Shuaiyu, Song Kexing, Hu Hao
Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
J Colloid Interface Sci. 2025 Feb;679(Pt A):615-623. doi: 10.1016/j.jcis.2024.10.014. Epub 2024 Oct 5.
Electrochemical reduction of CO into valuable multi-carbon (C) chemicals holds promise for mitigating CO emissions and enabling artificial carbon cycling. However, achieving high selectivity remains challenging due to the limited activity and active sites of CC coupling catalysts. Herein, we report an Ag-modified Cu-oxide catalyst (CuO/Ag@C) derived from metal-organic frameworks (MOF), capable of efficiently converting CO to CH. The MOF-derived porous carbon confines the size of metal nanoparticles, ensuring sufficient exposure of active sites. Remarkably, the CuO/Ag@C catalyst achieves an impressive Faradaic efficiency of 48.6% for CH at -0.7 V vs. RHE, demonstrating excellent stability. Both experimental results and theoretical calculations indicate that Ag sites promote the production of CO, enhancing the coverage of *CO on Cu sites. Furthermore, the reconfiguration of charge density at the Cu-Ag interface optimizes the electronic states of the reaction sites, reducing the formation energy of the key intermediate *OCCHO, thereby favoring CH production effectively. This work provides insight into structurally rational catalyst design for highly active and selective multiphase catalysts.
将二氧化碳电化学还原为有价值的多碳(C)化学品有望减少二氧化碳排放并实现人工碳循环。然而,由于碳-碳偶联催化剂的活性和活性位点有限,实现高选择性仍然具有挑战性。在此,我们报道了一种源自金属有机框架(MOF)的银修饰氧化铜催化剂(CuO/Ag@C),它能够有效地将二氧化碳转化为甲烷。MOF衍生的多孔碳限制了金属纳米颗粒的尺寸,确保活性位点充分暴露。值得注意的是,CuO/Ag@C催化剂在相对于可逆氢电极(RHE)为-0.7 V时,对甲烷的法拉第效率达到了令人印象深刻的48.6%,显示出优异的稳定性。实验结果和理论计算均表明,银位点促进了一氧化碳的生成,提高了CO在铜位点上的覆盖度。此外,铜-银界面处电荷密度的重新配置优化了反应位点的电子态,降低了关键中间体OCCHO的生成能,从而有效地促进了甲烷的生成。这项工作为高活性和选择性多相催化剂的结构合理设计提供了见解。