Liu Hengheng, Gao Fengyu, Luo Ning, Wen Jiajun, Yi Honghong, Tang Xiaolong
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
J Colloid Interface Sci. 2025 Feb;679(Pt A):634-652. doi: 10.1016/j.jcis.2024.09.251. Epub 2024 Oct 2.
In the selective catalytic reduction of NOx by NH (NH-SCR), conventional Mn-based denitration catalysts often suffered from susceptibility to poisoning by alkali and alkaline earth metals, this paper presented an innovative self-protected Chlorella@Mn denitration catalyst. Remarkably, in the presence of high concentrations (2 wt%) of alkali and alkaline earth metal oxides, the Chlorella@Mn catalyst sustained a NOx conversion exceeding 96 % at 175 °C. At an even higher concentration (4 wt%), NOx conversion above 90 % at 175 °C, surface analysis revealed that POMn sites acted as sacrificial sites, binding to the alkali and alkaline earth metals, the Chlorella@Mn catalyst surface naturally carried a spectrum of acidic species (such as SO, PO, SiO), proficient in capturing alkali/alkaline earth metal effectively, elements such as S, P, and Si formed bonds with K, Na, Ca, and Mg. The synergistic protection of the active sites and the surface elements avoided the deactivation of the catalyst. The detrimental effects of high concentrations of alkali and alkaline earth metals were primarily due to promoting an excessively high valence state of Mn on the catalyst surface and the reduction or loss of NH adsorption and activation at Brønsted acid sites. This research provided valuable insights for advancing the development of low-temperature denitration catalysts with improved resistance to alkali and alkaline earth metal poisoning.
在氨选择性催化还原氮氧化物(NH-SCR)反应中,传统的锰基脱硝催化剂常常容易受到碱金属和碱土金属中毒的影响。本文提出了一种创新的具有自我保护功能的小球藻@锰脱硝催化剂。值得注意的是,在存在高浓度(2 wt%)碱金属和碱土金属氧化物的情况下,小球藻@锰催化剂在175℃时能保持超过96%的氮氧化物转化率。在更高浓度(4 wt%)下,175℃时氮氧化物转化率高于90%,表面分析表明,POMn位点作为牺牲位点,与碱金属和碱土金属结合,小球藻@锰催化剂表面天然带有一系列酸性物种(如SO、PO、SiO),能够有效地捕获碱/碱土金属,硫、磷和硅等元素与钾、钠、钙和镁形成键。活性位点和表面元素的协同保护避免了催化剂失活。高浓度碱金属和碱土金属的有害影响主要是由于促进了催化剂表面锰的过高价态以及布朗斯特酸位点上氨吸附和活化的减少或丧失。这项研究为推进具有更好抗碱金属和碱土金属中毒性能的低温脱硝催化剂的开发提供了有价值的见解。