Wu Shuang, Liu Xinyi, Hao Zhimeng, Sun Xingwei, Hou Jinze, Shang Long, Wang Linyue, Zhang Kai, Li Haixia, Yan Zhenhua, Chen Jun
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
J Am Chem Soc. 2024 Oct 23;146(42):28770-28782. doi: 10.1021/jacs.4c07739. Epub 2024 Oct 10.
The inferior oxidative stability of commercial carbonate electrolytes and overgrowth of the electrode-electrolyte interphase (EEI) have largely hindered the development of high-voltage lithium metal batteries. In this study, these challenges are addressed by designing Li-solvent chelating solvation structures to inhibit solvent decomposition using cyano-alkyl-phosphate as a demonstration. Theoretical and experimental studies confirm that the -P═O and -C≡N groups within diethyl (2-cyanethyl) phosphonate exhibit a comparable ability to coordinate with Li, facilitating the formation of seven-membered chelating structures. This unique solvation structure contributes to the formation of anion-derived inorganic-rich EEI with high stability and robustness, hindering the further decomposition of the electrolyte. Additionally, the cyano group has a strong complexation with the transition metal (TM) in the cathode to inhibit TM dissolution, thereby ensuring the structural stability of the cathode particle. Utilizing this special chelating structure, the designed electrolyte demonstrates favorable Li plating/stripping reversibility and promising oxidative stability in high-voltage batteries. Consequently, the LiNiCoMnO (NCM811) cathode exhibits a high capacity retention (90%) after operating 300 cycles. Under harsh testing conditions, the 4.6 V Li||NCM811 pouch cell with a capacity of 1.4 Ah (∼295 Wh kg based on the total mass of the cell) retains 70% capacity after 80 cycles. This work provides new insights into the correlation between the solvation structure and oxidative stability of electrolytes, contributing significantly to the advancement of high-voltage lithium metal batteries.
商用碳酸酯电解质较差的氧化稳定性以及电极-电解质界面(EEI)的过度生长在很大程度上阻碍了高压锂金属电池的发展。在本研究中,通过设计锂-溶剂螯合溶剂化结构以抑制溶剂分解来应对这些挑战,以氰基烷基磷酸酯作为示例。理论和实验研究证实,二乙基(2-氰基乙基)膦酸酯中的-P═O和-C≡N基团表现出与锂配位的相当能力,促进了七元螯合结构的形成。这种独特的溶剂化结构有助于形成具有高稳定性和坚固性的阴离子衍生的富含无机物的EEI,阻碍电解质的进一步分解。此外,氰基与阴极中的过渡金属(TM)具有很强的络合作用以抑制TM溶解,从而确保阴极颗粒的结构稳定性。利用这种特殊的螯合结构,所设计的电解质在高压电池中表现出良好的锂电镀/剥离可逆性和有前景的氧化稳定性。因此,LiNiCoMnO(NCM811)阴极在运行300次循环后表现出高容量保持率(90%)。在苛刻的测试条件下,容量为1.4 Ah(基于电池总质量约为295 Wh kg)的4.6 V Li||NCM811软包电池在80次循环后保持70%的容量。这项工作为电解质的溶剂化结构与氧化稳定性之间的相关性提供了新的见解,对高压锂金属电池的发展做出了重大贡献。