Suppr超能文献

剪接体成分PRPF40A在微小外显子剪接中的保守作用。

Conserved role for spliceosomal component PRPF40A in microexon splicing.

作者信息

Choudhary Bikash, Norris Adam

机构信息

Department of Biochemistry, University of California, Riverside, California 92521, USA.

Department of Biochemistry, University of California, Riverside, California 92521, USA

出版信息

RNA. 2024 Dec 16;31(1):43-50. doi: 10.1261/rna.080142.124.

Abstract

Microexons (exons ≤30 nt) are important features of neuronal transcriptomes, but pose mechanistic challenges to the splicing machinery. We previously showed that PRP-40, a component of the U1 spliceosome, is globally required for microexon splicing in Here we show that the homologous PRPF40A is also globally required for microexon splicing in mouse neuroblastoma cells. We find that PRPF40A coregulates microexons along with SRRM4, a neuron-specific regulator of microexon splicing. The relationship between exon size and dependence on PRPF40A/SRRM4 is distinct, with SRRM4-dependence exhibiting a size threshold (∼30 nt) and PRPF40A-dependence exhibiting a graded decrease as exon size increases. Finally, we show that PRPF40A knockdown causes an increase in productive splicing of its spliceosomal binding partner by the skipping of a small "poison exon." Similar homeostatic cross-regulation is often observed across paralogous RNA-binding proteins. Here we find this concept likewise applies across evolutionarily unrelated but functionally and physically coupled spliceosomal components.

摘要

微小外显子(外显子长度≤30个核苷酸)是神经元转录组的重要特征,但对剪接机制提出了机制上的挑战。我们之前表明,U1剪接体的一个组分PRP-40在秀丽隐杆线虫中是微小外显子剪接全局所需的。在此我们表明,同源的PRPF40A在小鼠神经母细胞瘤细胞中也是微小外显子剪接全局所需的。我们发现PRPF40A与SRRM4共同调节微小外显子,SRRM4是微小外显子剪接的神经元特异性调节因子。外显子大小与对PRPF40A/SRRM4的依赖性之间的关系是不同的,对SRRM4的依赖性表现出一个大小阈值(约30个核苷酸),而对PRPF40A的依赖性随着外显子大小增加呈梯度下降。最后,我们表明敲低PRPF40A会通过跳过一个小的“毒性外显子”导致其剪接体结合伴侣的有效剪接增加。在同源RNA结合蛋白中经常观察到类似的稳态交叉调节。在此我们发现这个概念同样适用于进化上不相关但在功能和物理上偶联的剪接体组分。

相似文献

1
Conserved role for spliceosomal component PRPF40A in microexon splicing.
RNA. 2024 Dec 16;31(1):43-50. doi: 10.1261/rna.080142.124.
2
Conserved role for spliceosomal component PRPF40A in microexon splicing.
bioRxiv. 2024 Sep 26:2024.09.26.615222. doi: 10.1101/2024.09.26.615222.
3
Spliceosomal component PRP-40 is a central regulator of microexon splicing.
Cell Rep. 2021 Aug 3;36(5):109464. doi: 10.1016/j.celrep.2021.109464.
4
Cells resist starvation through a nutrient stress splice switch.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf525.
5
Swt21p Is Required for Nam8p-U1 snRNP Association and Efficient Pre-mRNA Splicing in .
Int J Mol Sci. 2025 Jun 6;26(12):5440. doi: 10.3390/ijms26125440.
6
Functional analysis of the zinc finger modules of the splicing factor Luc7.
RNA. 2024 Jul 16;30(8):1058-1069. doi: 10.1261/rna.079956.124.
8
An interpretable model of pre-mRNA splicing for animal and plant genes.
Sci Adv. 2024 May 10;10(19):eadn1547. doi: 10.1126/sciadv.adn1547. Epub 2024 May 8.
9
Positioning of pyrimidine motifs around cassette exons defines their PTB-dependent splicing in Arabidopsis.
Plant J. 2024 Jun;118(6):2202-2218. doi: 10.1111/tpj.16739. Epub 2024 Apr 5.
10
Role of the SAF-A/HNRNPU SAP domain in X chromosome inactivation, nuclear dynamics, transcription, splicing, and cell proliferation.
PLoS Genet. 2025 Jun 10;21(6):e1011719. doi: 10.1371/journal.pgen.1011719. eCollection 2025 Jun.

本文引用的文献

1
TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation.
Nucleic Acids Res. 2023 Oct 13;51(18):9610-9628. doi: 10.1093/nar/gkad665.
2
Spliceosomal component PRP-40 is a central regulator of microexon splicing.
Cell Rep. 2021 Aug 3;36(5):109464. doi: 10.1016/j.celrep.2021.109464.
3
Loss of LUC7L2 and U1 snRNP subunits shifts energy metabolism from glycolysis to OXPHOS.
Mol Cell. 2021 May 6;81(9):1905-1919.e12. doi: 10.1016/j.molcel.2021.02.033. Epub 2021 Apr 13.
4
Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder.
Curr Opin Genet Dev. 2020 Dec;65:22-33. doi: 10.1016/j.gde.2020.03.007. Epub 2020 Jun 11.
5
A unified mechanism for intron and exon definition and back-splicing.
Nature. 2019 Sep;573(7774):375-380. doi: 10.1038/s41586-019-1523-6. Epub 2019 Sep 4.
7
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons.
Nat Ecol Evol. 2019 Apr;3(4):691-701. doi: 10.1038/s41559-019-0813-6. Epub 2019 Mar 4.
9
JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8181-E8190. doi: 10.1073/pnas.1806018115. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验