N'Guessan Jacques-Ezechiel, Ahmed Muhammad Hassaan, Leineweber Matthew, Goyal Sachin
Department of Mechanical Engineering, University of California, Merced, California, USA.
Biomedical Engineering Department, San Jose State University, San Jose, California, USA.
Int J Numer Method Biomed Eng. 2024 Dec;40(12):e3876. doi: 10.1002/cnm.3876. Epub 2024 Oct 10.
This paper introduces a novel computational framework for evaluating above-knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis-specific and patient-specific contributions to gait deviations. This innovative approach utilizes three separate computational models to quantify the changes in gait dynamics necessary to achieve a set of ideal gait kinematics across different prosthesis designs. The pilot study presented here employs a simple two-dimensional swing-phase model to conceptually demonstrate how the outcomes of this three-model framework can assess the extent to which prosthesis design impacts a user's ability to replicate the dynamics of able-bodied gait. Furthermore, this framework offers potential for optimizing passive prosthetic devices for individual patients, thereby reducing the need for real-life experiments, clinic visits, and overcoming rehabilitation challenges.
本文介绍了一种用于评估膝上假肢的新型计算框架,解决了步态偏差研究中的一个主要挑战:区分假肢特异性和患者特异性对步态偏差的影响。这种创新方法利用三个独立的计算模型来量化在不同假肢设计中实现一组理想步态运动学所需的步态动力学变化。此处呈现的初步研究采用了一个简单的二维摆动期模型,从概念上展示了这个三模型框架的结果如何评估假肢设计对用户复制健全人步态动力学能力的影响程度。此外,该框架为为个体患者优化被动假肢装置提供了潜力,从而减少了实际实验、临床就诊的需求,并克服了康复挑战。