Suppr超能文献

机器学习辅助 amidase 催化对映选择性预测和变体的合理设计,以提高对映选择性。

Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity.

机构信息

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2024 Oct 10;15(1):8778. doi: 10.1038/s41467-024-53048-0.

Abstract

Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.

摘要

生物催化是一种有吸引力的方法,可用于合成手性药物和精细化学品,但评估和/或提高生物催化剂对目标底物的对映选择性通常需要耗费大量的时间和资源。尽管机器学习已被用于揭示蛋白质序列与生物催化对映选择性之间的潜在关系,但化学家通常忽略了建立底物适应性空间,这仍然是一个挑战。使用我们之前工作中收集的 240 个数据集,我们采用化学和几何描述符,并构建随机森林分类模型,以预测酰胺酶对新底物的对映选择性。我们进一步提出了一种基于这些模型的启发式策略,通过该策略,可以有效地进行理性蛋白质工程,以合成具有更高 ee 值的手性化合物,并且优化的变体与野生型酰胺酶相比,E 值提高了 53 倍。这种数据驱动的方法有望拓宽机器学习在生物催化研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87db/11467325/0f9b99e3ac06/41467_2024_53048_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验