Suppr超能文献

机器学习辅助酶工程面临的机遇与挑战

Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.

作者信息

Yang Jason, Li Francesca-Zhoufan, Arnold Frances H

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

ACS Cent Sci. 2024 Feb 5;10(2):226-241. doi: 10.1021/acscentsci.3c01275. eCollection 2024 Feb 28.

Abstract

Enzymes can be engineered at the level of their amino acid sequences to optimize key properties such as expression, stability, substrate range, and catalytic efficiency-or even to unlock new catalytic activities not found in nature. Because the search space of possible proteins is vast, enzyme engineering usually involves discovering an enzyme starting point that has some level of the desired activity followed by directed evolution to improve its "fitness" for a desired application. Recently, machine learning (ML) has emerged as a powerful tool to complement this empirical process. ML models can contribute to (1) starting point discovery by functional annotation of known protein sequences or generating novel protein sequences with desired functions and (2) navigating protein fitness landscapes for fitness optimization by learning mappings between protein sequences and their associated fitness values. In this Outlook, we explain how ML complements enzyme engineering and discuss its future potential to unlock improved engineering outcomes.

摘要

酶可以在其氨基酸序列水平上进行改造,以优化关键特性,如表达、稳定性、底物范围和催化效率,甚至还能开启自然界中未发现的新催化活性。由于可能的蛋白质搜索空间非常庞大,酶工程通常包括找到一个具有一定程度所需活性的酶起始点,然后通过定向进化来提高其在特定应用中的“适应性”。最近,机器学习(ML)已成为补充这一经验过程的强大工具。ML模型可有助于:(1)通过对已知蛋白质序列进行功能注释或生成具有所需功能的新蛋白质序列来发现起始点;(2)通过学习蛋白质序列与其相关适应性值之间的映射关系,在蛋白质适应性景观中导航以优化适应性。在本展望文章中,我们解释了ML如何补充酶工程,并讨论了其未来解锁更好工程成果的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce3/10906252/265d797ec161/oc3c01275_0001.jpg

相似文献

1
Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.机器学习辅助酶工程面临的机遇与挑战
ACS Cent Sci. 2024 Feb 5;10(2):226-241. doi: 10.1021/acscentsci.3c01275. eCollection 2024 Feb 28.
4
Machine learning-assisted enzyme engineering.机器学习辅助酶工程。
Methods Enzymol. 2020;643:281-315. doi: 10.1016/bs.mie.2020.05.005. Epub 2020 Jun 12.
5
Current status and emerging frontiers in enzyme engineering: An industrial perspective.酶工程的现状与新兴前沿:工业视角
Heliyon. 2024 Jun 7;10(11):e32673. doi: 10.1016/j.heliyon.2024.e32673. eCollection 2024 Jun 15.
9
Machine learning-assisted directed protein evolution with combinatorial libraries.机器学习辅助的组合文库定向蛋白质进化。
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858. doi: 10.1073/pnas.1901979116. Epub 2019 Apr 12.

引用本文的文献

6
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .工程化抗氧化应激的机制与策略
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
10
From reactants to products: computational methods for biosynthetic pathway design.从反应物到产物:生物合成途径设计的计算方法
Synth Syst Biotechnol. 2025 May 15;10(3):1038-1049. doi: 10.1016/j.synbio.2025.05.005. eCollection 2025 Sep.

本文引用的文献

1
The genetic architecture of protein stability.蛋白质稳定性的遗传结构。
Nature. 2024 Oct;634(8035):995-1003. doi: 10.1038/s41586-024-07966-0. Epub 2024 Sep 25.
2
7
Generative artificial intelligence for de novo protein design.用于全新蛋白质设计的生成式人工智能。
Curr Opin Struct Biol. 2024 Jun;86:102794. doi: 10.1016/j.sbi.2024.102794. Epub 2024 Apr 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验