Suppr超能文献

基于卷积神经网络算法的计算机辅助诊断,用于自动检测普通 X 光尿路结石。

Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray.

机构信息

Department of Urology, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan.

Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

BMC Urol. 2021 Aug 5;21(1):102. doi: 10.1186/s12894-021-00874-9.

Abstract

BACKGROUND

Recent increased use of medical images induces further burden of their interpretation for physicians. A plain X-ray is a low-cost examination that has low-dose radiation exposure and high availability, although diagnosing urolithiasis using this method is not always easy. Since the advent of a convolutional neural network via deep learning in the 2000s, computer-aided diagnosis (CAD) has had a great impact on automatic image analysis in the urological field. The objective of our study was to develop a CAD system with deep learning architecture to detect urinary tract stones on a plain X-ray and to evaluate the model's accuracy.

METHODS

We collected plain X-ray images of 1017 patients with a radio-opaque upper urinary tract stone. X-ray images (n = 827 and 190) were used as the training and test data, respectively. We used a 17-layer Residual Network as a convolutional neural network architecture for patch-wise training. The training data were repeatedly used until the best model accuracy was achieved within 300 runs. The F score, which is a harmonic mean of the sensitivity and positive predictive value (PPV) and represents the balance of the accuracy, was measured to evaluate the model's accuracy.

RESULTS

Using deep learning, we developed a CAD model that needed 110 ms to provide an answer for each X-ray image. The best F score was 0.752, and the sensitivity and PPV were 0.872 and 0.662, respectively. When limited to a proximal ureter stone, the sensitivity and PPV were 0.925 and 0.876, respectively, and they were the lowest at mid-ureter.

CONCLUSION

CAD of a plain X-ray may be a promising method to detect radio-opaque urinary tract stones with satisfactory sensitivity although the PPV could still be improved. The CAD model detects urinary tract stones quickly and automatically and has the potential to become a helpful screening modality especially for primary care physicians for diagnosing urolithiasis. Further study using a higher volume of data would improve the diagnostic performance of CAD models to detect urinary tract stones on a plain X-ray.

摘要

背景

最近,医学影像的使用增加,这给医生的解读工作带来了更大的负担。X 光平片检查是一种低成本的检查方法,辐射剂量低,可用性高,但使用这种方法诊断尿路结石并不总是容易的。自 21 世纪初深度学习卷积神经网络出现以来,计算机辅助诊断(CAD)在泌尿外科领域的自动图像分析中产生了重大影响。我们的研究目的是开发一种具有深度学习架构的 CAD 系统,以检测 X 光平片上的尿路结石,并评估该模型的准确性。

方法

我们收集了 1017 名有不透射线上尿路结石的患者的 X 光平片图像。X 射线图像(n=827 和 190)分别用作训练和测试数据。我们使用 17 层残差网络作为卷积神经网络架构进行逐块训练。训练数据被反复使用,直到在 300 次运行中达到最佳模型精度。我们使用 F 分数来评估模型的准确性,F 分数是敏感性和阳性预测值(PPV)的调和平均值,代表准确性的平衡。

结果

使用深度学习,我们开发了一个 CAD 模型,每个 X 射线图像需要 110 毫秒来提供答案。最佳 F 分数为 0.752,敏感性和 PPV 分别为 0.872 和 0.662。当仅限于近端输尿管结石时,敏感性和 PPV 分别为 0.925 和 0.876,在中输尿管时最低。

结论

CAD 对 X 光平片的检测可能是一种有前途的方法,可以检测出具有满意敏感性的不透射线尿路结石,尽管 PPV 仍有待提高。CAD 模型可以快速自动地检测尿路结石,有可能成为一种有帮助的筛查方式,特别是对于初级保健医生诊断尿路结石。使用更大的数据量进行进一步研究将提高 CAD 模型在 X 光平片上检测尿路结石的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6d/8340490/b3564e0d340c/12894_2021_874_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验