Hennessey Madeline, Whitefield Benjamin, Singh Priya, Alijani Hossein, Abe Hiroshi, Ohshima Takeshi, Gavin Christopher, Broadway David A, Toth Milos, Tetienne Jean-Philippe, Aharonovich Igor, Kianinia Mehran
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57552-57557. doi: 10.1021/acsami.4c12802. Epub 2024 Oct 10.
Spin defects in hexagonal boron nitride (hBN) are emerging as promising platforms for quantum sensing applications. In particular, the negatively charged boron vacancy () centers have been engineered in bulk hBN and few-layer hBN flakes, and employed for sensing. Here, we investigate the engineering of spin defects in boron nitride nanotubes (BNNTs). The generated spin defects are distributed along and around the BNNTs. Moreover, in contrast to hBN flakes, the spins in BNNTs exhibit a directional response relative to the direction of a surrounding magnetic field, which is consistent with the tubular geometry. The unique geometry of BNNTs allows for a more controlled and predictable placement of spin defects compared to bulk hBN, paving the way for innovative sensing applications with high spatial resolution and optomechanical studies of spin defects in hBN.
六方氮化硼(hBN)中的自旋缺陷正成为量子传感应用中很有前景的平台。特别是,带负电荷的硼空位()中心已在块状hBN和少层hBN薄片中构建,并用于传感。在此,我们研究了氮化硼纳米管(BNNTs)中自旋缺陷的构建。所产生的自旋缺陷沿着BNNTs并分布在其周围。此外,与hBN薄片不同,BNNTs中的自旋相对于周围磁场的方向表现出定向响应,这与管状几何形状一致。与块状hBN相比,BNNTs独特的几何形状使得自旋缺陷的放置更可控且可预测,为具有高空间分辨率的创新传感应用以及hBN中自旋缺陷的光机械研究铺平了道路。