Murzakhanov Fadis F, Yavkin Boris V, Mamin Georgiy V, Orlinskii Sergei B, Mumdzhi Ivan E, Gracheva Irina N, Gabbasov Bulat F, Smirnov Alexander N, Davydov Valery Yu, Soltamov Victor A
Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
Division of Solid State Physics, Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia.
Nanomaterials (Basel). 2021 May 22;11(6):1373. doi: 10.3390/nano11061373.
Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB-). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB- centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB- centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB- spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB- spin embedded in the hBN as a probe.
半导体中缺陷的光学可寻址高自旋态(S≥1)是固态量子技术发展的基础。最近,在六方氮化硼(hBN)中发现了一种这样的缺陷,并将其确定为带负电荷的硼空位(VB-)。为了探索和利用这种缺陷的性质,需要设计一种在hBN晶体中创建它的可靠方法。我们研究了通过高能(E = 2 MeV)电子束辐照在hBN单晶中创建VB-中心的可能性。对辐照样品的光激发会在近红外范围内诱导荧光,同时产生零场分裂值为 = 3.6 GHz的三重态中心的电子自旋共振(ESR)光谱,这表明基态自旋子能级发生了光诱导的粒子数反转。这些观察结果是VB-中心的特征,表明电子辐照可可靠地用于在hBN中创建这些中心。对VB-自旋共振线形状的探索使我们能够确定线展宽的来源,这是由于二维B-N原子平面彼此精确平行的取向略有偏差而发生的。利用嵌入hBN中的VB-自旋作为探针,对展宽机制的分析结果可用于二维材料的晶体质量控制。