Suppr超能文献

宫颈癌中表观遗传谱分析的进展:用于分类DNA甲基化模式的机器学习技术

Advancing epigenetic profiling in cervical cancer: machine learning techniques for classifying DNA methylation patterns.

作者信息

Handa Vikas, Batra Shalini, Arora Vinay

机构信息

Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India.

Computer Science & Engineering Department, Thapar Institute of Engineering & Technology, Patiala, India.

出版信息

3 Biotech. 2024 Nov;14(11):264. doi: 10.1007/s13205-024-04107-2. Epub 2024 Oct 9.

Abstract

This study investigates the ability to predict DNA methylation patterns in cervical cancer cells using decision-tree-based ensemble approaches and neural network-based models. The research findings suggest that a model based on random forest achieves a significant prediction accuracy of 91.35%. This projection was derived from comprehensive experimentation and a meticulous performance evaluation of the random forest model, employing a range of measures including Accuracy, Sensitivity, Specificity, Matthews Correlation Coefficient, F1-score, Recall, and Precision. The results indicate that the random forest model exhibits superior performance compared to other tree-based models such as the Simple Decision Tree and XGBoost, as well as neural network-based models including Convolutional Neural Networks, Feed Forward Networks, and Wavelet Neural Networks. The findings indicate that using random forest-based techniques has great potential for future study and might be highly valuable in clinical applications, especially in improving diagnostic and treatment strategies based on epigenetic profiles.

摘要

本研究调查了使用基于决策树的集成方法和基于神经网络的模型预测宫颈癌细胞中DNA甲基化模式的能力。研究结果表明,基于随机森林的模型实现了91.35%的显著预测准确率。这一预测是通过对随机森林模型进行全面实验和细致的性能评估得出的,采用了包括准确率、灵敏度、特异性、马修斯相关系数、F1分数、召回率和精确率等一系列指标。结果表明,与其他基于树的模型(如简单决策树和XGBoost)以及基于神经网络的模型(包括卷积神经网络、前馈网络和小波神经网络)相比,随机森林模型表现出更优的性能。研究结果表明,基于随机森林的技术在未来研究中具有巨大潜力,在临床应用中可能具有很高的价值,特别是在基于表观遗传特征改进诊断和治疗策略方面。

相似文献

1
Advancing epigenetic profiling in cervical cancer: machine learning techniques for classifying DNA methylation patterns.
3 Biotech. 2024 Nov;14(11):264. doi: 10.1007/s13205-024-04107-2. Epub 2024 Oct 9.
5
Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.
Clin Orthop Relat Res. 2024 Aug 1;482(8):1472-1482. doi: 10.1097/CORR.0000000000003018. Epub 2024 Mar 12.
6
Comparative analysis of convolutional neural networks and transformer architectures for breast cancer histopathological image classification.
Front Med (Lausanne). 2025 Jun 17;12:1606336. doi: 10.3389/fmed.2025.1606336. eCollection 2025.
7
Improved bio-inspired with machine learning computing approach for thyroid prediction.
Sci Rep. 2025 Jul 2;15(1):22524. doi: 10.1038/s41598-025-03299-8.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.
BMC Infect Dis. 2025 Jul 1;25(1):847. doi: 10.1186/s12879-025-11199-5.

本文引用的文献

1
Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns.
Biol Methods Protoc. 2024 Jun 20;9(1):bpae028. doi: 10.1093/biomethods/bpae028. eCollection 2024.
2
Application of deep learning in cancer epigenetics through DNA methylation analysis.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad411.
3
Artificial intelligence and cancer.
Nat Cancer. 2020 Feb;1(2):149-152. doi: 10.1038/s43018-020-0034-6.
4
Cancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data.
Comput Struct Biotechnol J. 2021 Aug 9;19:4404-4411. doi: 10.1016/j.csbj.2021.08.006. eCollection 2021.
5
Predictive Supervised Machine Learning Models for Diabetes Mellitus.
SN Comput Sci. 2020;1(5):240. doi: 10.1007/s42979-020-00250-8. Epub 2020 Jul 21.
9
LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data.
BMC Genomics. 2019 Apr 23;20(1):306. doi: 10.1186/s12864-019-5654-9.
10
MRCNN: a deep learning model for regression of genome-wide DNA methylation.
BMC Genomics. 2019 Apr 4;20(Suppl 2):192. doi: 10.1186/s12864-019-5488-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验