Vu Tuan V, Hiep Nguyen T, Hoa Vo T, Nguyen Chuong V, Phuc Huynh V, Hoi Bui D, Kartamyshev A I, Hieu Nguyen N
Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam.
RSC Adv. 2024 Oct 10;14(44):32053-32062. doi: 10.1039/d4ra06406b. eCollection 2024 Oct 9.
In the present work, we propose GaGeX (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX are found as piezoelectric materials with high piezoelectric coefficient of -1.23 pm V for the GaGeAs monolayer. Furthermore, the results from electronic band structures show that the GaGeX have semiconductor behaviours with moderate bandgap energies. At the Heyd-Scuseria-Ernzerhof level, the GaGeP and GaGeAs exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX monolayers, we calculate their carrier mobility. All three investigated GaGeX systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm V s in the and directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX structures but also provide promising materials to apply for multifunctional devices.
在本工作中,我们提出了GaGeX(X = N、P、As)单层结构,并基于第一性原理模拟探索了它们在多功能应用中的结构、振动、压电、电子和输运特性。我们对结合能、声子色散谱和分子动力学模拟的分析表明,所提出的三种结构具有良好的能量、动力学和热力学稳定性。发现GaGeX为压电材料,GaGeAs单层的压电系数高达-1.23 pm V。此外,电子能带结构的结果表明,GaGeX具有中等带隙能量的半导体行为。在Heyd-Scuseria-Ernzerhof水平下,GaGeP和GaGeAs分别展现出适用于光伏应用的1.75和1.15 eV的最佳带隙。此外,为了研究GaGeX单层的输运特性,我们计算了它们的载流子迁移率。所有研究的三种GaGeX体系在两个面内方向上对于电子和空穴都具有各向异性的载流子迁移率。其中,GaGeAs单层在x和y方向上分别展现出最高的电子迁移率,为2270.17和1788.59 cm² V⁻¹ s⁻¹。凭借高电子迁移率、大压电系数和中等带隙能量,GaGeAs材料在电子、光电子、压电和光伏应用方面具有潜在的适用性。因此,我们的研究结果不仅预测了稳定的GaGeX结构,还为多功能器件的应用提供了有前景的材料。