Suppr超能文献

基于基因表达的全基因组染色质可及性预测

Genome-wide Prediction of Chromatin Accessibility Based on Gene Expression.

作者信息

Zhou Weiqiang, Hongkai Ji

机构信息

Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.

出版信息

Wiley Interdiscip Rev Comput Stat. 2021 Sep-Oct;13(5). doi: 10.1002/wics.1544. Epub 2020 Dec 17.

Abstract

Decoding gene regulation in a biological system requires information from both transcriptome and regulome. While multiple high-throughput transcriptome and regulome mapping technologies are available, transcriptome profiling is more widely used. Today, over a million bulk and single-cell gene expression samples are stored in public databases. This number is orders of magnitude larger than the number of available regulome samples. Most of the gene expression samples do not have corresponding regulome data. However, it is possible to obtain regulome information via prediction. Open chromatin is a hallmark of active regulatory elements. This mini-review discusses recent advances in predicting chromatin accessibility using gene expression data, including both the development of prediction methods and their applications in expanding the regulome catalog, improving regulome analysis, integrating transcriptome and regulome data, and facilitating single-cell analysis of gene regulation.

摘要

解码生物系统中的基因调控需要来自转录组和调控组的信息。虽然有多种高通量转录组和调控组图谱绘制技术,但转录组分析的应用更为广泛。如今,超过一百万个批量和单细胞基因表达样本存储在公共数据库中。这个数字比可用的调控组样本数量大几个数量级。大多数基因表达样本没有相应的调控组数据。然而,通过预测获得调控组信息是可能的。开放染色质是活跃调控元件的一个标志。这篇小型综述讨论了利用基因表达数据预测染色质可及性的最新进展,包括预测方法的发展及其在扩展调控组目录、改进调控组分析、整合转录组和调控组数据以及促进基因调控的单细胞分析中的应用。

相似文献

1
Genome-wide Prediction of Chromatin Accessibility Based on Gene Expression.
Wiley Interdiscip Rev Comput Stat. 2021 Sep-Oct;13(5). doi: 10.1002/wics.1544. Epub 2020 Dec 17.
2
Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq.
Nucleic Acids Res. 2019 Nov 4;47(19):e121. doi: 10.1093/nar/gkz716.
3
Genome-wide prediction of DNase I hypersensitivity using gene expression.
Nat Commun. 2017 Oct 19;8(1):1038. doi: 10.1038/s41467-017-01188-x.
4
Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma.
Cancers (Basel). 2022 Feb 13;14(4):927. doi: 10.3390/cancers14040927.
5
Regulome-wide association study identifies genetically driven accessible regions associated with pancreatic cancer risk.
Int J Cancer. 2024 Feb 15;154(4):670-678. doi: 10.1002/ijc.34761. Epub 2023 Oct 18.
6
Integrative analyses of single-cell transcriptome and regulome using MAESTRO.
Genome Biol. 2020 Aug 7;21(1):198. doi: 10.1186/s13059-020-02116-x.
7
Modeling the Sulfur Regulome by Quantifying the Storage and Communication of Information.
mSystems. 2018 Jun 19;3(3). doi: 10.1128/mSystems.00189-17. eCollection 2018 May-Jun.
8
Regulome-based characterization of drug activity across the human diseasome.
NPJ Syst Biol Appl. 2022 Nov 7;8(1):44. doi: 10.1038/s41540-022-00255-4.
10
Regulatory Architecture of the LβT2 Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone.
Front Endocrinol (Lausanne). 2018 Feb 14;9:34. doi: 10.3389/fendo.2018.00034. eCollection 2018.

本文引用的文献

1
Deep Learning Implicitly Handles Tissue Specific Phenomena to Predict Tumor DNA Accessibility and Immune Activity.
iScience. 2019 Oct 25;20:119-136. doi: 10.1016/j.isci.2019.09.018. Epub 2019 Sep 14.
3
Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq.
Nucleic Acids Res. 2019 Nov 4;47(19):e121. doi: 10.1093/nar/gkz716.
4
A comparison of single-cell trajectory inference methods.
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
5
Deep generative modeling for single-cell transcriptomics.
Nat Methods. 2018 Dec;15(12):1053-1058. doi: 10.1038/s41592-018-0229-2. Epub 2018 Nov 30.
6
Joint profiling of chromatin accessibility and gene expression in thousands of single cells.
Science. 2018 Sep 28;361(6409):1380-1385. doi: 10.1126/science.aau0730. Epub 2018 Aug 30.
8
Genome-wide prediction of DNase I hypersensitivity using gene expression.
Nat Commun. 2017 Oct 19;8(1):1038. doi: 10.1038/s41467-017-01188-x.
9
Single-cell regulome data analysis by SCRAT.
Bioinformatics. 2017 Sep 15;33(18):2930-2932. doi: 10.1093/bioinformatics/btx315.
10
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.
Nucleic Acids Res. 2016 Jul 27;44(13):e117. doi: 10.1093/nar/gkw430. Epub 2016 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验