Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.
Department of Physics, University of California, Berkeley, Berkeley, CA, USA.
Nat Methods. 2018 Dec;15(12):1053-1058. doi: 10.1038/s41592-018-0229-2. Epub 2018 Nov 30.
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task.
单细胞转录组测量可以揭示尚未被探索的生物多样性,但它们受到技术噪声和偏差的影响,必须对其进行建模,以解释下游分析中产生的不确定性。在这里,我们介绍单细胞变分推断(scVI),这是一个可用于单细胞基因表达的概率表示和分析的即用型可扩展框架(https://github.com/YosefLab/scVI)。scVI 使用随机优化和深度神经网络来聚合相似细胞和基因的信息,并近似观察到的表达值所依据的分布,同时考虑到批次效应和有限的灵敏度。我们使用 scVI 进行了一系列基本的分析任务,包括批次校正、可视化、聚类和差异表达,并且每项任务都达到了高精度。