Suppr超能文献

利用少量细胞和单细胞 RNA 测序进行全基因组染色质可及性预测。

Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq.

机构信息

Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.

出版信息

Nucleic Acids Res. 2019 Nov 4;47(19):e121. doi: 10.1093/nar/gkz716.

Abstract

Conventional high-throughput genomic technologies for mapping regulatory element activities in bulk samples such as ChIP-seq, DNase-seq and FAIRE-seq cannot analyze samples with small numbers of cells. The recently developed low-input and single-cell regulome mapping technologies such as ATAC-seq and single-cell ATAC-seq (scATAC-seq) allow analyses of small-cell-number and single-cell samples, but their signals remain highly discrete or noisy. Compared to these regulome mapping technologies, transcriptome profiling by RNA-seq is more widely used. Transcriptome data in single-cell and small-cell-number samples are more continuous and often less noisy. Here, we show that one can globally predict chromatin accessibility and infer regulatory element activities using RNA-seq. Genome-wide chromatin accessibility predicted by RNA-seq from 30 cells can offer better accuracy than ATAC-seq from 500 cells. Predictions based on single-cell RNA-seq (scRNA-seq) can more accurately reconstruct bulk chromatin accessibility than using scATAC-seq. Integrating ATAC-seq with predictions from RNA-seq increases the power and value of both methods. Thus, transcriptome-based prediction provides a new tool for decoding gene regulatory circuitry in samples with limited cell numbers.

摘要

传统的高通量基因组技术,如 ChIP-seq、DNase-seq 和 FAIRE-seq,可用于对大量样本中的调控元件活性进行作图,但无法分析细胞数量较少的样本。最近开发的低输入和单细胞调控组图谱绘制技术,如 ATAC-seq 和单细胞 ATAC-seq(scATAC-seq),允许分析细胞数量较少和单细胞样本,但它们的信号仍然高度离散或嘈杂。与这些调控组图谱绘制技术相比,RNA-seq 进行的转录组分析更为广泛。单细胞和细胞数量较少的样本中的转录组数据更连续,通常噪声更小。在这里,我们表明可以使用 RNA-seq 对染色质可及性进行全局预测,并推断调控元件的活性。从 30 个细胞的 RNA-seq 预测的全基因组染色质可及性比从 500 个细胞的 ATAC-seq 具有更高的准确性。基于单细胞 RNA-seq(scRNA-seq)的预测比使用 scATAC-seq 更能准确地重建批量染色质可及性。将 ATAC-seq 与 RNA-seq 的预测相结合,可以提高这两种方法的效能和价值。因此,基于转录组的预测为在细胞数量有限的样本中解码基因调控回路提供了一种新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda7/6821224/42ce32bb3155/gkz716fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验