Suppr超能文献

机器学习模型在未治疗感染早期检测中的开发与验证

Development and Validation of a Machine Learning Model for Early Detection of Untreated Infection.

机构信息

Department of Medicine, University of Chicago Medical Center, Chicago, IL.

Department of Medicine, Duke University, Raleigh-Durham, NC.

出版信息

Crit Care Explor. 2024 Oct 11;6(10):e1165. doi: 10.1097/CCE.0000000000001165. eCollection 2024 Oct 1.

Abstract

BACKGROUND

Early diagnostic uncertainty for infection causes delays in antibiotic administration in infected patients and unnecessary antibiotic administration in noninfected patients.

OBJECTIVE

To develop a machine learning model for the early detection of untreated infection (eDENTIFI), with the presence of infection determined by clinician chart review.

DERIVATION COHORT

Three thousand three hundred fifty-seven adult patients hospitalized between 2006 and 2018 at two health systems in Illinois, United States.

VALIDATION COHORT

We validated in 1632 patients in a third Illinois health system using area under the receiver operating characteristic curve (AUC).

PREDICTION MODEL

Using a longitudinal discrete-time format, we trained a gradient boosted machine model to predict untreated infection in the next 6 hours using routinely available patient demographics, vital signs, and laboratory results.

RESULTS

eDENTIFI had an AUC of 0.80 (95% CI, 0.79-0.81) in the validation cohort and outperformed the systemic inflammatory response syndrome criteria with an AUC of 0.64 (95% CI, 0.64-0.65; p < 0.001). The most important features were body mass index, age, temperature, and heart rate. Using a threshold with a 47.6% sensitivity, eDENTIFI detected infection a median 2.0 hours (interquartile range, 0.9-5.2 hr) before antimicrobial administration, with a negative predictive value of 93.6%. Antibiotic administration guided by eDENTIFI could have decreased unnecessary IV antibiotic administration in noninfected patients by 10.8% absolute or 46.4% relative percentage points compared with clinicians.

CONCLUSION

eDENTIFI could both decrease the time to antimicrobial administration in infected patients and unnecessary antibiotic administration in noninfected patients. Further prospective validation is needed.

摘要

背景

早期诊断不确定是否存在感染会导致感染患者延迟使用抗生素,也会导致非感染患者不必要地使用抗生素。

目的

开发一种用于早期检测未治疗感染(eDENTIFI)的机器学习模型,感染的存在通过临床医生的图表审查来确定。

来源队列

来自美国伊利诺伊州的两个医疗系统的 3357 名成年住院患者,住院时间为 2006 年至 2018 年。

验证队列

我们在伊利诺伊州的第三个医疗系统中使用 1632 名患者进行验证,使用接受者操作特征曲线下的面积(AUC)。

预测模型

使用纵向离散时间格式,我们训练了一个梯度提升机模型,使用常规可用的患者人口统计学、生命体征和实验室结果来预测下一个 6 小时内的未治疗感染。

结果

eDENTIFI 在验证队列中的 AUC 为 0.80(95%CI,0.79-0.81),优于全身炎症反应综合征标准的 AUC 为 0.64(95%CI,0.64-0.65;p<0.001)。最重要的特征是体重指数、年龄、体温和心率。使用 47.6%敏感性的阈值,eDENTIFI 在抗菌药物治疗前中位数 2.0 小时(四分位距,0.9-5.2 小时)检测到感染,阴性预测值为 93.6%。与临床医生相比,根据 eDENTIFI 进行抗生素治疗可使非感染患者减少 10.8%的绝对或 46.4%的相对百分比的不必要静脉内抗生素治疗。

结论

eDENTIFI 既可以缩短感染患者使用抗菌药物的时间,也可以减少非感染患者不必要的抗生素使用。还需要进一步的前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4879/11473064/2aab06ef490d/cc9-6-e1165-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验