Suppr超能文献

一种用于稳健肌电控制应用的新型指令手势集确定方案。

A Novel Instruction Gesture Set Determination Scheme for Robust Myoelectric Control Applications.

作者信息

Ruan Yuwen, Chen Xiang, Zhang Xu

出版信息

IEEE Trans Biomed Eng. 2025 Mar;72(3):909-920. doi: 10.1109/TBME.2024.3479232. Epub 2025 Feb 20.

Abstract

OBJECTIVE

Myoelectric control technology has important application value in rehabilitation medicine, prosthesis control, human-computer interaction (HCI) and other fields. However, the user dependence of electromyography (EMG) pattern recognition is one of the key problems hindering the implementation of robust myoelectric control applications. Aimed at solving the user dependence problem, this paper proposed a novel instruction gesture set determination scheme for EMG pattern recognition in user-independent mode.

METHODS

The scheme uses T-distributed stochastic neighbor embedding (T-SNE) dimensionality reduction to analyze high-dimensional surface EMG data from multiple users and gestures. This process can identify gesture combinations with minimal individual differences and high separability.

RESULTS

The proposed scheme was validated using two large-scale EMG gesture databases with different acquisition devices, subjects, and gestures. Optimal and inferior gesture sets of varying sizes were identified. In recognition experiments conducted in both user-independent and electrode-offset modes, the optimal gesture sets demonstrated significantly higher recognition accuracies compared to the inferior sets, with improvements ranging from 12.57% to 36.92%.

CONCLUSION

The results demonstrated that the separability of the obtained optimal gesture sets was significantly superior to that of the inferior sets, confirming the effectiveness of the proposed scheme in reducing user dependence in EMG pattern recognition.

SIGNIFICANCE

The study has certain application value to promote the development of myoelectric control technology. Specifically, the scheme proposed can be used to determine instruction gesture sets with low user dependence and high separability for myoelectric control applications.

摘要

目的

肌电控制技术在康复医学、假肢控制、人机交互(HCI)等领域具有重要的应用价值。然而,肌电图(EMG)模式识别对用户的依赖性是阻碍稳健肌电控制应用实施的关键问题之一。针对解决用户依赖性问题,本文提出了一种在独立于用户模式下用于EMG模式识别的新型指令手势集确定方案。

方法

该方案使用T分布随机邻域嵌入(T-SNE)降维来分析来自多个用户和手势的高维表面肌电数据。此过程能够识别个体差异最小且可分离性高的手势组合。

结果

使用两个具有不同采集设备、受试者和手势的大规模肌电手势数据库对所提出的方案进行了验证。确定了不同大小的最优和次优手势集。在独立于用户和电极偏移模式下进行的识别实验中,最优手势集的识别准确率明显高于次优手势集,提高幅度在12.57%至36.92%之间。

结论

结果表明,所获得的最优手势集的可分离性明显优于次优手势集,证实了所提出方案在降低EMG模式识别中用户依赖性方面的有效性。

意义

该研究对推动肌电控制技术的发展具有一定的应用价值。具体而言,所提出的方案可用于确定肌电控制应用中用户依赖性低且可分离性高的指令手势集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验