Suppr超能文献

使用受节奏游戏启发的评估环境比较基于在线手腕和前臂肌电图的控制。

Comparing online wrist and forearm EMG-based control using a rhythm game-inspired evaluation environment.

作者信息

Meredith Robyn, Eddy Ethan, Bateman Scott, Scheme Erik

机构信息

University of New Brunswick, Fredericton, NB E3B 5A3, Canada.

出版信息

J Neural Eng. 2024 Aug 22;21(4). doi: 10.1088/1741-2552/ad692e.

Abstract

The use of electromyogram (EMG) signals recorded from the wrist is emerging as a desirable input modality for human-machine interaction (HMI). Although forearm-based EMG has been used for decades in prosthetics, there has been comparatively little prior work evaluating the performance of wrist-based control, especially in online, user-in-the-loop studies. Furthermore, despite different motivating use cases for wrist-based control, research has mostly adopted legacy prosthesis control evaluation frameworks.Gaining inspiration from rhythm games and the Schmidt's law speed-accuracy tradeoff, this work proposes a new temporally constrained evaluation environment with a linearly increasing difficulty to compare the online usability of wrist and forearm EMG. Compared to the more commonly used Fitts' Law-style testing, the proposed environment may offer different insights for emerging use cases of EMG as it decouples the machine learning algorithm's performance from proportional control, is easily generalizable to different gesture sets, and enables the extraction of a wide set of usability metrics that describe a users ability to successfully accomplish a task at a certain time with different levels of induced stress.The results suggest that wrist EMG-based control is comparable to that of forearm EMG when using traditional prosthesis control gestures and can even be better when using fine finger gestures. Additionally, the results suggest that as the difficulty of the environment increased, the online metrics and their correlation to the offline metrics decreased, highlighting the importance of evaluating myoelectric control in real-time evaluations over a range of difficulties.This work provides valuable insights into the future design and evaluation of myoelectric control systems for emerging HMI applications.

摘要

利用从手腕记录的肌电图(EMG)信号正成为人机交互(HMI)中一种理想的输入方式。尽管基于前臂的肌电图已在假肢领域使用了数十年,但此前评估基于手腕控制性能的工作相对较少,尤其是在在线的、用户参与的研究中。此外,尽管基于手腕控制有不同的应用动机,但研究大多采用传统的假肢控制评估框架。从节奏游戏和施密特定律的速度 - 准确性权衡中获得灵感,这项工作提出了一种新的具有时间限制的评估环境,其难度呈线性增加,以比较手腕和前臂肌电图的在线可用性。与更常用的菲茨定律式测试相比,所提出的环境可能为肌电图的新兴应用提供不同的见解,因为它将机器学习算法的性能与比例控制解耦,易于推广到不同的手势集,并能够提取一系列可用性指标,这些指标描述了用户在不同程度的诱导压力下在特定时间成功完成任务的能力。结果表明,在使用传统假肢控制手势时,基于手腕肌电图的控制与基于前臂肌电图的控制相当,而在使用精细手指手势时甚至可能更好。此外,结果表明随着环境难度的增加,在线指标及其与离线指标的相关性降低,突出了在一系列难度下进行实时评估时评估肌电控制的重要性。这项工作为新兴HMI应用的肌电控制系统的未来设计和评估提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验