Suppr超能文献

用于理解复杂分子机制的 DNA 双链断裂修复中间体的分离与纯化。

Isolation and purification of DNA double-strand break repair intermediates for understanding complex molecular mechanisms.

机构信息

Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS One. 2024 Oct 11;19(10):e0308786. doi: 10.1371/journal.pone.0308786. eCollection 2024.

Abstract

Branched DNA molecules are key intermediates in the molecular pathways of DNA replication, repair and recombination. Understanding their structural details, therefore, helps to envisage the mechanisms underlying these processes. While the configurations of DNA molecules can be effectively analysed in bulk using gel electrophoresis techniques, direct visualization provides a complementary single-molecule approach to investigating branched DNA structures. However, for microscopic examination, the sample needs to be free from impurities that could obscure the molecules of interest, and free from the bulk of unwanted non-specific DNA molecules that would otherwise dominate the field of view. Additionally, in the case of recombination intermediates, the length of the DNA molecules becomes an important factor to consider since the structures can be spread over a large distance on the chromosome in vivo. As a result, apart from sample purity, efficient isolation of large-sized DNA fragments without damaging their branched structures is crucial for further analysis. These factors are illustrated by the example of DNA double-strand break repair in the bacterium E. coli. In E. coli recombination intermediates may be spread over a distance of 40 kb which constitutes less than 1% of the 4.6 Mb genome. This study reveals ways to overcome some of the technical challenges that are associated with the isolation and purification of large and complex branched DNA structures using E. coli DNA double-strand break repair intermediates. High-molecular weight and branched DNA molecules do not run into agarose gels subjected to electrophoresis. However, they can be extracted from the wells of the gels if they are agarose embedded, by using β-agarase digestion, filtration, and concentration. Furthermore, a second round of gel electrophoresis followed by purification is recommended to enhance the purity of the specific DNA samples. These preliminary findings may prove to be pioneering for various single-molecule analyses of large and complex DNA molecules of DNA replication, repair and recombination.

摘要

分叉 DNA 分子是 DNA 复制、修复和重组分子途径中的关键中间体。因此,了解它们的结构细节有助于设想这些过程的机制。虽然可以使用凝胶电泳技术有效地分析大量 DNA 分子的构型,但直接可视化提供了一种互补的单分子方法来研究分叉 DNA 结构。然而,对于显微镜检查,样品需要不含可能掩盖感兴趣分子的杂质,并且不含大量非特异性 DNA 分子,否则这些分子会主导视野。此外,在重组中间体的情况下,DNA 分子的长度成为一个重要因素,因为结构在体内染色体上可能会扩散到很大的距离。因此,除了样品纯度外,有效地分离大尺寸的 DNA 片段而不破坏其分支结构对于进一步分析至关重要。这些因素通过细菌 E. coli 中的 DNA 双链断裂修复的例子来说明。在 E. coli 中,重组中间体可能扩散到 40kb 的距离,这不到 4.6Mb 基因组的 1%。这项研究揭示了使用 E. coli DNA 双链断裂修复中间体克服与分离和纯化大而复杂分支 DNA 结构相关的一些技术挑战的方法。高分子量和分叉 DNA 分子不会在电泳过程中进入琼脂糖凝胶。然而,如果它们被琼脂糖嵌入,可以通过使用β-琼脂酶消化、过滤和浓缩从凝胶的孔中提取出来。此外,建议进行第二轮凝胶电泳和纯化,以提高特定 DNA 样品的纯度。这些初步发现可能证明对 DNA 复制、修复和重组的大而复杂的 DNA 分子的各种单分子分析具有开创性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3263/11469543/49d582c97666/pone.0308786.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验