Suppr超能文献

使用羧基化纤维素纳米晶体对电子级可印刷石墨烯进行生物可再生剥离

Biorenewable Exfoliation of Electronic-Grade Printable Graphene Using Carboxylated Cellulose Nanocrystals.

作者信息

Hui Janan, You Haoyang, Van Beek Anton, Zhang Jinrui, Elahi Arash, Downing Julia R, Chaney Lindsay E, Lee DoKyoung, Ainsworth Elizabeth A, Chaudhuri Santanu, Dunn Jennifer B, Chen Wei, Rowan Stuart J, Hersam Mark C

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57534-57543. doi: 10.1021/acsami.4c12664. Epub 2024 Oct 11.

Abstract

The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass × as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 10 S m. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 μm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.

摘要

缺乏可扩展且环境可持续的电子级石墨烯纳米片生产方法,仍然是石墨烯在印刷电子和导电复合材料中进行工业规模应用的障碍。为满足这一未被满足的需求,在此我们报道利用从多年生高草×中提取的羧基化纤维素纳米晶体(CNCs)作为生物可再生分散剂,用于少层石墨烯纳米片的水相液相剥离。使用贝叶斯机器学习模型对这种基于CNC的剥离过程进行了优化,从而实现了13.4%的显著石墨到石墨烯转化率以及3.4×10 S m的渗流石墨烯薄膜电导率。将剥离后的石墨烯分散体直接使用基于纤维素的添加剂配制成气溶胶喷射印刷油墨,以实现高分辨率印刷(~20μm线宽)。与现有的电子级石墨烯纳米片液相剥离方法相比,这种基于CNC的剥离方法的生命周期评估显示在化石燃料消耗、温室气体排放和水消耗方面有显著改善。从机理上讲,分子动力学模拟的潜在平均力计算表明,高剥离产率可追溯到CNC与石墨烯之间有利的表面相互作用。最终,使用生物可再生的CNC进行液相剥离将加速用于导电应用的石墨烯的可扩展且环保的制造。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验