Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.
Tsinghua Shenzhen International Graduate School, Shenzhen, China.
J Stroke Cerebrovasc Dis. 2024 Dec;33(12):108070. doi: 10.1016/j.jstrokecerebrovasdis.2024.108070. Epub 2024 Oct 10.
This study aims to investigate whether a deep learning approach incorporating retinal blood vessels can effectively identify ischemic stroke patients with a high burden of White Matter Hyperintensities (WMH) using Nuclear Magnetic Resonance Imaging (MRI) as the gold standard.
In this cross-sectional study, we evaluated 263 ischemic stroke inpatients who had acquired both retinal fundus images and MRI images. The primary outcome was the diagnostic WMH on MRI brain, defined as different degrees of the age-related white matter changes (ARWMC) grade (<2 or ≥2). We developed a deep-learning network model with retinal fundus images to estimate WMH.
The mean age of the patient cohort was 60.8 years, with 196 individuals (74.5%) being male. The prevalence of risk factors was as follows: hypertension in 237 (90.1%), diabetes in 109 (41.4%), hyperlipidemias in 84 (31.9%), coronary heart disease in 37 (14.1%), hyperhomocysteinemia in 70 (26.6%), and hyperuricemia in 73 (27.8%). Severe WMH defined as global ARWMC grade ≥2 was found in 139 (52.9%) participants. Using binocular fundus images, we achieved an F1 score of 0.811 and a Macro Accuracy of 0.811 in the ARWMC classification task. Additionally, we conducted experiments by progressively occluding fundus images to assess the relationship between different areas of the fundus images and ARWMC prediction.
Our study presents a novel deep learning model designed to detect a high burden of WMH using binocular fundus images in ischemic stroke patients. We have conducted initial investigations into the predictive significance of various fundus image areas for WMH identification. These findings underscore the need for broader data collection, further model training, and prospective data validation.
本研究旨在探讨使用磁共振成像(MRI)作为金标准,通过整合视网膜血管的深度学习方法,是否可以有效地识别出磁共振成像显示有大量脑白质高信号(WMH)的缺血性脑卒中患者。
在这项横断面研究中,我们评估了 263 名缺血性脑卒中住院患者,这些患者均同时获得了眼底图像和 MRI 图像。主要结局是 MRI 脑白质的诊断性 WM 负荷,定义为不同程度的与年龄相关的白质改变(ARWMC)分级(<2 或≥2)。我们开发了一个基于眼底图像的深度学习网络模型来估计 WM。
患者队列的平均年龄为 60.8 岁,其中 196 人(74.5%)为男性。危险因素的患病率如下:高血压 237 例(90.1%)、糖尿病 109 例(41.4%)、高脂血症 84 例(31.9%)、冠心病 37 例(14.1%)、高同型半胱氨酸血症 70 例(26.6%)和高尿酸血症 73 例(27.8%)。严重 WM 定义为全球 ARWMC 分级≥2,在 139 名(52.9%)患者中发现。使用双眼眼底图像,我们在 ARWMC 分类任务中实现了 0.811 的 F1 评分和 0.811 的宏准确率。此外,我们通过逐步遮挡眼底图像进行了实验,以评估眼底图像的不同区域与 ARWMC 预测之间的关系。
本研究提出了一种新的深度学习模型,旨在使用缺血性脑卒中患者的双眼眼底图像来检测 WM 负荷较高的情况。我们已经对各种眼底图像区域对 WM 识别的预测意义进行了初步研究。这些发现强调了需要进行更广泛的数据收集、进一步的模型训练和前瞻性数据验证。