Division of Neurology Department of Medicine and Therapeutics Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong.
Therese Pei Fong Chow Research Centre for Prevention of Dementia and Gerald Choa Neuroscience Centre Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong.
Ann Clin Transl Neurol. 2018 Nov 15;6(1):98-105. doi: 10.1002/acn3.688. eCollection 2019 Jan.
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.
In this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.
All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).
We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
我们研究了一种结合机器学习方法的自动视网膜图像分析(ARIA)是否可以使用 MRI 作为金标准来识别无症状的老年人群中存在高负荷脑白质高信号(WMH)的个体。
在这项横断面研究中,我们评估了 180 名居住在社区、无中风和痴呆的健康个体,并通过获取非散瞳眼底视网膜图像进行 ARIA。主要结局是 ARIA 在检测 MRI 脑上显著 WMH 的诊断性能,定义为与年龄相关的脑白质改变(ARWMC)等级≥2。我们使用逻辑回归分析对临床变量和视网膜特征进行了分析。我们开发了一种具有 ARIA 的机器学习网络模型来估计 WMH 及其分类。
所有 180 名受试者均完成了 MRI 和 ARIA。平均年龄为 70.3±4.5 岁,70 名(39%)为男性。危险因素谱为:106 名(59%)高血压,31 名(17%)糖尿病和 47 名(26%)高脂血症。56 名(31%)受试者存在严重的 WMH(总 ARWMC 等级≥2)。检测严重 WMH 的性能具有优异的敏感性(SN)0.929(95%CI 为 0.819 至 0.977)和特异性(SP)0.984(95%CI 为 0.937 至 0.997)。MRI 获得的 WMH 体积(对数转换)与 ARIA 从视网膜图像估计的 WMH 体积之间存在良好的相关性,相关系数为 0.897(95%CI 为 0.864 至 0.922)。
我们开发了一种强大的算法来自动评估视网膜眼底图像,可以识别出 WMH 负担高的个体。应进一步开展基于社区的前瞻性研究,以对脑小血管疾病高危人群进行早期筛查。