Suppr超能文献

质子导电二维 MXene 衍生钛酸钾纳米带构建电化学平台用于恩诺沙星痕量检测。

Proton conductive 2D MXene-derived potassium titanate nanoribbons fabricated electrochemical platform for trace detection of enrofloxacin.

机构信息

Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India.

Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India.

出版信息

Chemosphere. 2024 Oct;366:143520. doi: 10.1016/j.chemosphere.2024.143520. Epub 2024 Oct 10.

Abstract

In recent years, due to exceptional properties like broad interlayered spacing and low working potential, MXene-derived titanate nanoribbons have been established as promising electrode materials. Herein, the electrocatalytic activity of MXene-derived potassium titanate nanoribbon was employed to develop a voltammetric sensor for the detection of enrofloxacin. The sensor's significance is to provide a sustainable solution to quantify the presence of enrofloxacin regarding food safety and environmental monitoring. Moreover, to achieve the United Nations' Sustainable Development Goals by preventing antimicrobial resistance to accomplish the One Health approach. Potassium titanate nanoribbons were synthesized using 2D TiC MXene as an active precursor material, while X-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction pattern, elemental mapping, and energy-dispersive X-ray spectroscopy were used to characterize the crystallinity, surface and layered morphology of synthesized nanoribbons. The Brunauer-Emmett-Teller (BET) technique was applied to calculate the specific surface area of the synthesized materials. The materials underwent electrochemical characterization using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Later on, the nanoribbons were fabricated on the surface of a glassy carbon electrode, and the electro-oxidative behaviour of enrofloxacin was studied by CV, DPV, square wave voltammetry (SWV) in 0.1 M phosphate buffer (optimized pH 8). The developed sensor depicts a significantly lower limit of quantification of 0.007 μM (≈2.5 μg/L), and an upper limit of quantification of 18 μM (≈6.5 mg/L) along with a limit of detection (LOD) of 0.00279, 0.00803, 0.00881 μM obtained from CV, DPV, and SWV respectively. Furthermore, the developed electrodes show a reliable selectivity to be examined in real complex matrices, i.e. marine water, river water, agricultural soil, organic fertilizer, milk, honey, and poultry egg.

摘要

近年来,由于 MXene 衍生钛酸盐纳米带具有广泛的层间间距和低工作电位等特殊性质,已被确立为有前途的电极材料。在此,我们利用 MXene 衍生的钛酸钾纳米带的电催化活性,开发了一种用于检测恩诺沙星的伏安传感器。该传感器的意义在于为食品安全和环境监测提供一种可持续的解决方案,以量化恩诺沙星的存在。此外,通过防止抗菌药物耐药性来实现联合国可持续发展目标,以实现“同一健康”方法。本文使用二维 TiC MXene 作为活性前体材料合成钾钛酸盐纳米带,同时使用 X 射线衍射光谱、场发射扫描电子显微镜、高分辨率透射电子显微镜、选区电子衍射图案、元素映射和能量色散 X 射线光谱对合成纳米带的结晶度、表面和层状形态进行了表征。采用 Brunauer-Emmett-Teller (BET) 技术计算合成材料的比表面积。通过循环伏安法 (CV)、差分脉冲伏安法 (DPV) 和电化学阻抗谱 (EIS) 对材料进行电化学表征。之后,将纳米带制备在玻碳电极表面,并通过 CV、DPV、方波伏安法 (SWV) 在 0.1 M 磷酸盐缓冲液(优化 pH 8)中研究恩诺沙星的电氧化行为。所开发的传感器的定量下限为 0.007 μM(≈2.5 μg/L),定量上限为 18 μM(≈6.5 mg/L),检出限(LOD)分别为 0.00279、0.00803、0.00881 μM,由 CV、DPV 和 SWV 获得。此外,所开发的电极在实际复杂基质中表现出可靠的选择性,例如海水、河水、农业土壤、有机肥料、牛奶、蜂蜜和禽蛋。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验