Water Mission Area, Integrated Modeling and Prediction Division, U.S. Geological Survey, Reston, Virginia 20192, United States.
Water Mission Area, Integrated Information Dissemination Division, U.S. Geological Survey, San Francisco, California 94122, United States.
Environ Sci Technol. 2024 Oct 22;58(42):18822-18833. doi: 10.1021/acs.est.4c05004. Epub 2024 Oct 11.
Stream salinization is a global issue, yet few models can provide reliable salinity estimates for unmonitored locations at the time scales required for ecological exposure assessments. Machine learning approaches are presented that use spatially limited high-frequency monitoring and spatially distributed discrete samples to estimate the daily stream-specific conductance across a watershed. We compare the predictive performance of space- and time-unaware Random Forest models and space- and time-aware Recurrent Graph Convolution Neural Network models (KGE: 0.67 and 0.64, respectively) and use explainable artificial intelligence methods to interpret model predictions and understand salinization drivers. These models are applied to the Delaware River Basin, a developed watershed with diverse land uses that experiences anthropogenic salinization from winter deicer applications. These models capture seasonality for the winter first flush of deicers, and the streams with elevated predictions correspond well with indicators of deicer application. This result suggests that these models can be used to identify potential salinity-impaired streams for winter best management practices. Daily salinity predictions are driven primarily by land cover (urbanization) trends that may represent anthropogenic salinization processes and weather at time scales up to three months. Such modeling approaches are likely transferable to other watersheds and can be applied to further understand salinization risks and drivers.
河流盐度化是一个全球性问题,但很少有模型能够在进行生态暴露评估所需的时间尺度内,为未监测到的地点提供可靠的盐度估计。本研究提出了一些机器学习方法,这些方法利用空间上有限的高频监测和空间上分布的离散样本来估算流域内每日特定河流的电导率。我们比较了空间和时间不可知的随机森林模型和空间和时间可知的递归图卷积神经网络模型的预测性能(KGE:分别为 0.67 和 0.64),并使用可解释的人工智能方法来解释模型预测结果,了解盐度化驱动因素。这些模型应用于特拉华河流域,该流域是一个发达的流域,土地利用类型多样,冬季融雪剂的应用导致其受到人为盐化的影响。这些模型能够捕捉到冬季融雪剂初期的季节性,并且预测值较高的河流与融雪剂应用的指示物很好地对应。这一结果表明,这些模型可用于识别冬季最佳管理实践中可能受到盐度影响的河流。每日盐度预测主要受土地覆盖(城市化)趋势的驱动,这些趋势可能代表人为盐化过程和长达三个月时间尺度内的天气。这种建模方法可能适用于其他流域,并可进一步用于了解盐化风险和驱动因素。