Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK.
Nat Plants. 2024 Nov;10(11):1749-1760. doi: 10.1038/s41477-024-01815-8. Epub 2024 Oct 11.
Recognizing pathogen-associated molecular patterns on the cell surface is crucial for plant immunity. The proteinaceous nature of many of these patterns suggests that secreted proteases play important roles in their formation and stability. Here we demonstrate that the apoplastic subtilase SBT5.2a inactivates the immunogenicity of cold-shock proteins (CSPs) of the bacterial plant pathogen Pseudomonas syringae by cleaving within the immunogenic csp22 epitope. Consequently, mutant plants lacking SBT5.2a activity retain higher levels of csp22, leading to enhanced immune responses and reduced pathogen growth. SBT5.2 sensitivity is influenced by sequence variation surrounding the cleavage site and probably extends to CSPs from other bacterial species. These findings suggest that variations in csp22 stability among bacterial pathogens are a crucial factor in plant-bacteria interactions and that pathogens exploit plant proteases to avoid pattern recognition.
识别细胞表面的病原体相关分子模式对于植物免疫至关重要。这些模式中的许多蛋白质性质表明分泌的蛋白酶在其形成和稳定性中发挥重要作用。在这里,我们证明细胞外的枯草杆菌蛋白酶 SBT5.2a 通过切割免疫原性的 csp22 表位使细菌植物病原体丁香假单胞菌的冷激蛋白 (CSP) 的免疫原性失活。因此,缺乏 SBT5.2a 活性的突变体植物保留了更高水平的 csp22,导致增强的免疫反应和减少的病原体生长。SBT5.2 的敏感性受切割位点周围序列变异的影响,可能扩展到来自其他细菌物种的 CSP。这些发现表明,细菌病原体之间 csp22 稳定性的变化是植物-细菌相互作用的关键因素,并且病原体利用植物蛋白酶来避免模式识别。