Suppr超能文献

基于个体层面和空间社会脆弱性指标的多囊卵巢综合征漏诊模式

Polycystic Ovary Syndrome Underdiagnosis Patterns by Individual-level and Spatial Social Vulnerability Measures.

作者信息

Silva Emily L, Lane Kevin J, Cheng Jay Jojo, Popp Zachary, van Loenen Breanna D, Coull Brent, Hart Jaime E, James-Todd Tamarra, Mahalingaiah Shruthi

机构信息

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.

出版信息

J Clin Endocrinol Metab. 2025 May 19;110(6):1657-1666. doi: 10.1210/clinem/dgae705.

Abstract

OBJECTIVE

To use electronic health records (EHR) data at Boston Medical Center (BMC) to identify individual-level and spatial predictors of missed diagnosis, among those who meet diagnostic criteria for polycystic ovary syndrome (PCOS).

METHODS

The BMC Clinical Data Warehouse was used to source patients who presented between October 1, 2003, and September 30, 2015, for any of the following: androgen blood tests, hirsutism, evaluation of menstrual regularity, pelvic ultrasound for any reason, or PCOS. Algorithm PCOS cases were identified as those with International Classification of Diseases (ICD) codes for irregular menstruation and either an ICD code for hirsutism, elevated testosterone lab, or polycystic ovarian morphology as identified using natural language processing on pelvic ultrasounds. Logistic regression models were used to estimate odds ratios (ORs) of missed PCOS diagnosis by age, race/ethnicity, education, primary language, body mass index, insurance type, and social vulnerability index (SVI) score.

RESULTS

In the 2003-2015 BMC-EHR PCOS at-risk cohort (n = 23 786), there were 1199 physician-diagnosed PCOS cases and 730 algorithm PCOS cases. In logistic regression models controlling for age, year, education, and SVI scores, Black/African American patients were more likely to have missed a PCOS diagnosis (OR = 1.69 [95% CI, 1.28, 2.24]) compared to non-Hispanic White patients, and relying on Medicaid or charity for insurance was associated with an increased odds of missed diagnosis when compared to private insurance (OR = 1.90 [95% CI, 1.47, 2.46], OR = 1.90 [95% CI, 1.41, 2.56], respectively). Higher SVI scores were associated with increased odds of missed diagnosis in univariate models.

CONCLUSION

We observed individual-level and spatial disparities within the PCOS diagnosis. Further research should explore drivers of disparities for earlier intervention.

摘要

目的

利用波士顿医疗中心(BMC)的电子健康记录(EHR)数据,在符合多囊卵巢综合征(PCOS)诊断标准的人群中,确定漏诊的个体水平和空间预测因素。

方法

使用BMC临床数据仓库,选取2003年10月1日至2015年9月30日期间因以下任何一种情况就诊的患者:雄激素血液检测、多毛症、月经规律评估、因任何原因进行的盆腔超声检查或PCOS。算法确定的PCOS病例为具有国际疾病分类(ICD)不规则月经编码,以及多毛症、睾酮实验室检查结果升高或通过盆腔超声自然语言处理确定的多囊卵巢形态的ICD编码的患者。采用逻辑回归模型,按年龄、种族/族裔、教育程度、主要语言、体重指数、保险类型和社会脆弱性指数(SVI)评分,估计漏诊PCOS的比值比(OR)。

结果

在2003 - 2015年BMC-EHR PCOS风险队列(n = 23786)中,有1199例经医生诊断的PCOS病例和730例算法确定的PCOS病例。在控制年龄、年份、教育程度和SVI评分的逻辑回归模型中,与非西班牙裔白人患者相比,黑人/非裔美国患者漏诊PCOS的可能性更高(OR = 1.69 [95% CI,1.28,2.24]),与私人保险相比,依靠医疗补助或慈善保险与漏诊几率增加相关(分别为OR = 1.90 [95% CI,1.47,2.46],OR = 1.90 [95% CI,1.41,2.56])。在单变量模型中,较高的SVI评分与漏诊几率增加相关。

结论

我们观察到PCOS诊断存在个体水平和空间差异。进一步的研究应探索差异的驱动因素,以便进行早期干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/12086426/22a38d986966/dgae705f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验