Suppr超能文献

相似文献

1
Computational Stabilization of a Non-Heme Iron Enzyme Enables Efficient Evolution of New Function.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414705. doi: 10.1002/anie.202414705. Epub 2024 Nov 11.
2
Computational stabilization of a non-heme iron enzyme enables efficient evolution of new function.
bioRxiv. 2024 Jul 25:2024.04.18.590141. doi: 10.1101/2024.04.18.590141.
3
Radical-relay C(sp)-H azidation catalyzed by an engineered nonheme iron enzyme.
Methods Enzymol. 2024;703:195-213. doi: 10.1016/bs.mie.2024.07.003. Epub 2024 Jul 23.
4
Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.
Methods Enzymol. 2024;696:231-247. doi: 10.1016/bs.mie.2024.03.004. Epub 2024 Apr 10.
5
Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands.
J Am Chem Soc. 2019 Dec 18;141(50):19585-19588. doi: 10.1021/jacs.9b11608. Epub 2019 Dec 6.
6
Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction.
J Am Chem Soc. 2024 Dec 18;146(50):34352-34363. doi: 10.1021/jacs.4c08420. Epub 2024 Dec 6.
7
Structural analysis of an open active site conformation of nonheme iron halogenase CytC3.
J Am Chem Soc. 2009 Apr 8;131(13):4872-9. doi: 10.1021/ja8097355.
8
Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp)-H azidation.
Science. 2022 May 20;376(6595):869-874. doi: 10.1126/science.abj2830. Epub 2022 May 19.
9
Evaluation of a concerted vs. sequential oxygen activation mechanism in α-ketoglutarate-dependent nonheme ferrous enzymes.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5152-5159. doi: 10.1073/pnas.1922484117. Epub 2020 Feb 24.

本文引用的文献

2
Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme.
Nat Commun. 2024 Mar 7;15(1):2084. doi: 10.1038/s41467-024-46356-y.
3
Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.
ACS Cent Sci. 2024 Feb 5;10(2):226-241. doi: 10.1021/acscentsci.3c01275. eCollection 2024 Feb 28.
4
Engineering Hydroxylase Activity, Selectivity, and Stability for a Scalable Concise Synthesis of a Key Intermediate to Belzutifan.
Angew Chem Int Ed Engl. 2024 Mar 22;63(13):e202316133. doi: 10.1002/anie.202316133. Epub 2024 Feb 19.
5
Empirical validation of ProteinMPNN's efficiency in enhancing protein fitness.
Front Genet. 2024 Jan 11;14:1347667. doi: 10.3389/fgene.2023.1347667. eCollection 2023.
6
Improving Protein Expression, Stability, and Function with ProteinMPNN.
J Am Chem Soc. 2024 Jan 24;146(3):2054-2061. doi: 10.1021/jacs.3c10941. Epub 2024 Jan 9.
7
Mega-scale experimental analysis of protein folding stability in biology and design.
Nature. 2023 Aug;620(7973):434-444. doi: 10.1038/s41586-023-06328-6. Epub 2023 Jul 19.
8
Structures of L-proline trans-hydroxylase reveal the catalytic specificity and provide deeper insight into AKG-dependent hydroxylation.
Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):318-325. doi: 10.1107/S2059798323001936. Epub 2023 Mar 28.
9
Robust deep learning-based protein sequence design using ProteinMPNN.
Science. 2022 Oct 7;378(6615):49-56. doi: 10.1126/science.add2187. Epub 2022 Sep 15.
10
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验