Suppr超能文献

通过高能球磨诱导硫化物基电解质分解为硫来提高固态电池的长期稳定性。

Enhancing Long Stability of Solid-State Batteries Through High-Energy Ball Milling-Induced Decomposition of Sulfide-Based Electrolyte to Sulfur.

作者信息

Qian Xitang, Lyu Yuxiang, Zhou Siyu, Qiu Yican, Sun Yan, Yuan Yuan, Shao Minhua

机构信息

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China.

CIAC-HKUST Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Clear Watery Bay, Kowloon, Hong Kong, 999077, China.

出版信息

Adv Mater. 2024 Nov;36(48):e2412319. doi: 10.1002/adma.202412319. Epub 2024 Oct 12.

Abstract

Metal sulfides are increasingly favored as cathode materials in all-solid-state batteries (ASSBs) due to their high energy density, stability, affordability, and conductivity. Metal sulfides often exhibit capacities exceeding their theoretical limits, a phenomenon that remains not fully understood. In this study, it reveals that this phenomenon is primarily due to the sulfur decomposition from sulfide-based electrolyte. By employing the high-energy ball milling (HEBM) technique, the deposition of sulfide-based electrolyte onto sulfur is intentionally promoted, resulting in higher charge capacities compared to the discharge capacities and surpass theoretical limits of metal sulfides. Using chromium sulfide (CrS) as the active material, the sulfur decomposed from sulfide-based electrolyte transforms into lithium sulfide (LiS) after discharge, resulting in an increased capacity by ≈439.6 mAh g and improved cycling stability. Consequently, it demonstrates a specific capacity surpassing 1200 mAh g with a capacity retention of over 80% after 650 cycles, maintaining cycling stability for more than 1900 cycles and achieving a Coulombic efficiency exceeding 99.9%. This versatile HEBM approach enables the fabrication of ASSBs utilizing various transition metal sulfides, such as molybdenum disulfide (MoS), niobium disulfide (NbS), and iron disulfide (FeS), all exhibiting over theoretical limited capacities and prolonged cycling capabilities.

摘要

由于具有高能量密度、稳定性、经济性和导电性,金属硫化物在全固态电池(ASSB)中越来越受到青睐,作为阴极材料。金属硫化物的容量常常超过其理论极限,这一现象尚未完全得到理解。在本研究中,揭示了这一现象主要是由于基于硫化物的电解质中的硫分解。通过采用高能球磨(HEBM)技术,有意促进了基于硫化物的电解质在硫上的沉积,导致充电容量高于放电容量,并超过了金属硫化物的理论极限。以硫化铬(CrS)作为活性材料,基于硫化物的电解质分解出的硫在放电后转化为硫化锂(LiS),使容量增加了约439.6 mAh g,并提高了循环稳定性。因此,它展示了超过1200 mAh g的比容量,在650次循环后容量保持率超过80%,在超过1900次循环中保持循环稳定性,并实现了超过99.9%的库仑效率。这种通用的HEBM方法能够制造使用各种过渡金属硫化物的全固态电池,如二硫化钼(MoS)、二硫化铌(NbS)和二硫化铁(FeS),所有这些都表现出超过理论极限的容量和延长的循环能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b294/11602688/79bfeb54b537/ADMA-36-2412319-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验