Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands.
Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.
ACS Infect Dis. 2024 Nov 8;10(11):3880-3890. doi: 10.1021/acsinfecdis.4c00488. Epub 2024 Oct 12.
Coronaviruses (CoVs) recognize a wide array of protein and glycan receptors by using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possesses an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9--acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that the HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GnTI cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high mannose-containing NTD proteins revealed a much broader receptor binding profile compared to that of its fully glycosylated counterpart. Using glycan microarrays, we observed that 9--acetylated α2-3-linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding toward 9--acetylated sialoglycans, independent of the glycan core (glycolipids, or -glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.
冠状病毒(CoVs)通过使用刺突(S)糖蛋白的 S1 亚基识别广泛的蛋白质和聚糖受体。S1 亚基包含两个功能域:N 端结构域(S1-NTD)和 C 端结构域(S1-CTD)。SARS-CoV-2、MERS-CoV 和 HCoV-HKU1 的 S1-NTD 具有进化上保守的聚糖结合裂缝,促进与细胞表面唾液酸的弱相互作用。HCoV-HKU1 最初使用 9-乙酰化的α2-8 连接的双唾液酸化结构进行结合,然后是 TMPRSS2 受体结合和病毒-细胞融合。在这里,我们证明 HCoV-HKU1 NTD 具有比以前认识到的更广泛的受体结合谱。我们在纳米颗粒系统上展示了 HCoV-HKU1 NTD Fc 嵌合体,以模拟 HCoV-HKU1 密集装饰的表面。这些蛋白由 HEK293S GnTI 细胞表达,生成携带 Man-5 结构的物种,该结构通常在 CoV 的受体结合位点附近观察到。与完全糖基化的对应物相比,高甘露糖含量的 NTD 蛋白的这种多价呈现揭示了更广泛的受体结合谱。使用聚糖微阵列,我们观察到 9-乙酰化的α2-3 连接的唾液酸化 LacNAc 结构也被结合,与 OC43 NTD 相当,表明存在进化上保守的聚糖结合模式。对受体特异性的进一步表征表明,9-乙酰化唾液糖与糖脂、糖蛋白或聚糖的糖核心无关,具有混杂的结合。我们证明 HCoV-HKU1 可能利用额外的唾液糖受体来触发刺突糖蛋白的构象变化,以暴露 S1-CTD 用于蛋白受体结合。