Czelej Kamil, Lambert M Rey, Turiansky Mark E, Koshevarnikov Aleksei, Mu Sai, Van de Walle Chris G
Faculty of Chemical and Process Engineering, Warsaw University of Technology, Ludwika Warynskiego 1, Warsaw 00-645, Poland.
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland.
ACS Nano. 2024 Oct 22;18(42):28724-28734. doi: 10.1021/acsnano.4c07184. Epub 2024 Oct 12.
Transition-metal centers exhibit a paramagnetic ground state in wide-bandgap semiconductors and are promising for nanophotonics and quantum information processing. Specifically, there is a growing interest in discovering prominent paramagnetic spin defects that can be manipulated using optical methods. Here, we investigate the electronic structure and magneto-optical properties of Cr and Mn substitutional centers in wurtzite AlN and GaN. We use state-of-the-art hybrid density functional theory calculations to determine level structure, stability, optical signatures, and magnetic properties of these centers. The excitation energies are calculated using the constrained occupation approach and rigorously verified with the complete active space configuration interaction approach. Our simulations of the photoluminescence spectra indicate that in AlN and in GaN are responsible for the observed narrow quantum emission near 1.2 eV. We compute the zero-field splitting (ZFS) parameters and outline an optical spin polarization protocol for and . Our results demonstrate that these centers are promising candidates for spin qubits.
过渡金属中心在宽带隙半导体中呈现顺磁基态,在纳米光子学和量子信息处理方面具有潜力。具体而言,人们越来越关注发现可通过光学方法操纵的显著顺磁自旋缺陷。在此,我们研究纤锌矿型AlN和GaN中Cr和Mn替代中心的电子结构和磁光性质。我们使用最先进的杂化密度泛函理论计算来确定这些中心的能级结构、稳定性、光学特征和磁性。激发能使用受限占据方法计算,并通过完全活性空间组态相互作用方法进行严格验证。我们对光致发光光谱的模拟表明,AlN中的 和GaN中的 是在1.2 eV附近观察到的窄量子发射的原因。我们计算了零场分裂(ZFS)参数,并概述了针对 和 的光学自旋极化协议。我们的结果表明,这些中心是自旋量子比特的有前途的候选者。