Suppr超能文献

缺陷量子计算。

Quantum computing with defects.

机构信息

Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 11;107(19):8513-8. doi: 10.1073/pnas.1003052107. Epub 2010 Apr 19.

Abstract

Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

摘要

确定并设计可用作量子信息基本单位的量子比特的物理系统是开发量子计算机的关键步骤。在固态中,钻石中的一种缺陷,即氮空位(NV(-1))中心,因其稳定性而脱颖而出——其量子态可以在室温下以高保真度初始化、操纵和测量。在这里,我们描述了如何系统地识别具有类似量子力学性质的其他深中心缺陷。我们提出了这些中心及其宿主应满足的一系列物理标准,并解释了如何将这些要求与电子结构理论结合使用,以智能地筛选候选缺陷系统。为了详细说明这些要点,我们将钻石中 NV(-1)中心的电子结构计算与 4H 碳化硅(SiC)中的几个深中心的电子结构计算进行了比较。然后,我们讨论了其他四面体配位半导体中类似缺陷的建议标准。

相似文献

1
Quantum computing with defects.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8513-8. doi: 10.1073/pnas.1003052107. Epub 2010 Apr 19.
2
Room temperature coherent control of defect spin qubits in silicon carbide.
Nature. 2011 Nov 2;479(7371):84-7. doi: 10.1038/nature10562.
3
Coherent Manipulation with Resonant Excitation and Single Emitter Creation of Nitrogen Vacancy Centers in 4H Silicon Carbide.
Nano Lett. 2020 Aug 12;20(8):6142-6147. doi: 10.1021/acs.nanolett.0c02342. Epub 2020 Jul 13.
4
Probing Charge Dynamics in Diamond with an Individual Color Center.
Nano Lett. 2021 Aug 25;21(16):6960-6966. doi: 10.1021/acs.nanolett.1c02250. Epub 2021 Aug 2.
6
Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature.
Phys Rev Lett. 2020 Jun 5;124(22):223601. doi: 10.1103/PhysRevLett.124.223601.
8
Quantum register based on individual electronic and nuclear spin qubits in diamond.
Science. 2007 Jun 1;316(5829):1312-6. doi: 10.1126/science.1139831.
9
Polytype control of spin qubits in silicon carbide.
Nat Commun. 2013;4:1819. doi: 10.1038/ncomms2854.
10
A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers.
Nanomaterials (Basel). 2019 Nov 7;9(11):1576. doi: 10.3390/nano9111576.

引用本文的文献

2
Solid State Defect Emitters With no Electrical Activity.
Adv Sci (Weinh). 2025 Aug;12(30):e03350. doi: 10.1002/advs.202503350. Epub 2025 May 28.
3
Sub‑2 Kelvin Characterization of Nitrogen-Vacancy Centers in Silicon Carbide Nanopillars.
ACS Photonics. 2025 Apr 22;12(5):2604-2611. doi: 10.1021/acsphotonics.5c00096. eCollection 2025 May 21.
4
Coherent phonon source based on electron spin resonance in a quantum-dot qubit.
Sci Rep. 2025 Apr 19;15(1):13616. doi: 10.1038/s41598-025-96345-4.
5
Diamond Color Center Based Quantum Metrology in Industries for Energy Applications.
ACS Omega. 2025 Jan 13;10(3):2372-2392. doi: 10.1021/acsomega.4c04406. eCollection 2025 Jan 28.
6
Recent advances in the theory of solid-state defect qubits.
Nanophotonics. 2023 Feb 1;12(3):359-397. doi: 10.1515/nanoph-2022-0723. eCollection 2023 Feb.
7
Transition-Metal-Related Quantum Emitters in Wurtzite AlN and GaN.
ACS Nano. 2024 Oct 22;18(42):28724-28734. doi: 10.1021/acsnano.4c07184. Epub 2024 Oct 12.
8
The phonon-modulated Jahn-Teller distortion of the nitrogen vacancy center in diamond.
Nat Commun. 2024 Oct 5;15(1):8646. doi: 10.1038/s41467-024-52712-9.
9
Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride.
Nano Lett. 2024 Oct 9;24(40):12390-12397. doi: 10.1021/acs.nanolett.4c02581. Epub 2024 Sep 23.
10

本文引用的文献

1
Hybrid functionals applied to extended systems.
J Phys Condens Matter. 2008 Feb 13;20(6):064201. doi: 10.1088/0953-8984/20/6/064201. Epub 2008 Jan 24.
2
Gigahertz dynamics of a strongly driven single quantum spin.
Science. 2009 Dec 11;326(5959):1520-2. doi: 10.1126/science.1181193.
3
Theory of spin-conserving excitation of the N-V(-) center in diamond.
Phys Rev Lett. 2009 Oct 30;103(18):186404. doi: 10.1103/PhysRevLett.103.186404. Epub 2009 Oct 27.
4
Ultralong spin coherence time in isotopically engineered diamond.
Nat Mater. 2009 May;8(5):383-7. doi: 10.1038/nmat2420. Epub 2009 Apr 6.
5
Fully ab initio finite-size corrections for charged-defect supercell calculations.
Phys Rev Lett. 2009 Jan 9;102(1):016402. doi: 10.1103/PhysRevLett.102.016402. Epub 2009 Jan 5.
6
Defect energy levels in density functional calculations: alignment and band gap problem.
Phys Rev Lett. 2008 Jul 25;101(4):046405. doi: 10.1103/PhysRevLett.101.046405.
7
Rare-earth solid-state qubits.
Nat Nanotechnol. 2007 Jan;2(1):39-42. doi: 10.1038/nnano.2006.174.
8
Coherent manipulation of single spins in semiconductors.
Nature. 2008 Jun 19;453(7198):1043-9. doi: 10.1038/nature07129.
9
Multipartite entanglement among single spins in diamond.
Science. 2008 Jun 6;320(5881):1326-9. doi: 10.1126/science.1157233.
10
Picosecond coherent optical manipulation of a single electron spin in a quantum dot.
Science. 2008 Apr 18;320(5874):349-52. doi: 10.1126/science.1154798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验