Suppr超能文献

Parameterization of a Fluctuating Charge Model for Complexes Containing 3d Transition Metals.

作者信息

Landry Luke, Li Pengfei

机构信息

Department of Chemistry, Loyola University Chicago, Chicago, Illinois 60660, United States.

出版信息

J Phys Chem B. 2024 Oct 24;128(42):10329-10338. doi: 10.1021/acs.jpcb.4c03219. Epub 2024 Oct 12.

Abstract

Metalloproteins widely exist in biology, playing pivotal roles in diverse life processes. Meanwhile, molecular dynamics (MD) simulations based on classical force fields has emerged as an important tool in scientific research. Partial charges are critical parameters within classical force fields and usually derived from quantum mechanical (QM) calculations. However, QM calculations are often time-consuming and prone to basis set dependence. Alternatively, fluctuating charge (FQ) models offer another avenue for partial charge derivation, which has significant speed advantages and can be used for large-scale screening. Building upon our previous work, which introduced an FQ model for zinc-containing complexes, herein we extend this model to include additional 3d transition metals which are important to the life sciences, namely chromium, manganese, iron, cobalt, and nickel. Employing CM5 charges as target for parametrization, our FQ model accurately reproduces partial charges for 3d metal complexes featuring biologically relevant ligands. Furthermore, by using atomic charges derived by our FQ model, MD simulations have been performed. These charges showed excellent performance in simulating proteomic metal sites housing multiple metal ions, specifically, a metalloprotein containing an iron-sulfur cluster and another containing a dimanganese metal site, showcasing comparable performance to those of RESP charges. We anticipate that our study can accelerate the parametrization of atomic charges for metalloproteins featuring 3d transition metals, thereby facilitating simulations of relevant systems.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验