Suppr超能文献

贝叶斯参数推断在上皮力学中的应用。

Bayesian parameter inference for epithelial mechanics.

机构信息

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.

Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.

出版信息

J Theor Biol. 2024 Dec 7;595:111960. doi: 10.1016/j.jtbi.2024.111960. Epub 2024 Oct 10.

Abstract

Cell-based mechanical models, such as the Cell Vertex Model (CVM), have proven useful for studying the mechanical control of epithelial tissue dynamics. We recently developed a statistical method called image-based parameter inference for formulating CVM model functions and estimating their parameters from image data of epithelial tissues. In this study, we employed Bayesian statistics to improve the utility and flexibility of image-based parameter inference. Tests on synthetic data confirmed that both our non-hierarchical and hierarchical Bayesian models provide accurate estimates of model parameters. By applying this method to Drosophila wings, we demonstrated that the reliability of parameter estimation is closely linked to the mechanical anisotropies present in the tissue. Moreover, we revealed that the cortical elasticity term is dispensable for explaining force-shape correlations in vivo. We anticipate that the flexibility of the Bayesian statistical framework will facilitate the integration of various types of information, thereby contributing to the quantitative dissection of the mechanical control of tissue dynamics.

摘要

基于细胞的力学模型,如细胞顶点模型(Cell Vertex Model,CVM),已被证明在研究上皮组织动力学的力学控制方面非常有用。我们最近开发了一种名为基于图像的参数推断的统计方法,用于构建 CVM 模型函数,并从上皮组织的图像数据中估计其参数。在这项研究中,我们采用贝叶斯统计学来提高基于图像的参数推断的实用性和灵活性。对合成数据的测试证实,我们的非层次和层次贝叶斯模型都能对模型参数进行准确估计。通过将这种方法应用于果蝇翅膀,我们证明了参数估计的可靠性与组织中的力学各向异性密切相关。此外,我们揭示了皮质弹性项对于解释体内力-形状相关性是可有可无的。我们预计贝叶斯统计框架的灵活性将有助于整合各种类型的信息,从而有助于对组织动力学的力学控制进行定量剖析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验