Cavanaugh Kate E, Staddon Michael F, Banerjee Shiladitya, Gardel Margaret L
Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA.
Department of Physics and Astronomy, and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom.
Curr Opin Genet Dev. 2020 Aug;63:86-94. doi: 10.1016/j.gde.2020.05.018. Epub 2020 Jun 27.
Epithelial morphogenesis relies on constituent cells' ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell-cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.
上皮形态发生依赖于组成细胞精细调节其力学特性的能力。由此产生的类似弹性和类似粘性的行为源于细胞 - 细胞界面处时空协调的机械化学信号。对接合处流变学的直接测量可以从机制上剖析机械变形及其分子起源。然而,接合处粘弹性的物理基础直到最近才在实验上变得易于处理。开创性研究揭示了关于收缩力和接合处变形性质的令人兴奋的发现,激发了一种从根本上理解形态发生的全新方式。在这里,我们讨论直接测试接合处力学的新技术,并描述相关的顶点模型及其改编形式,以捕获这些数据。然后,我们介绍通过光遗传学对接合处的操纵揭示的适应性组织粘弹性的概念。最后,我们对这个快速发展的领域提供未来展望,描述组织形态发生的物质基础。