Zhang Yuhao, Zhang Jiawen, Yang Qiang, Song Yao, Pan Mingfei, Kan Yajing, Xiang Li, Li Mei, Zeng Hongbo
School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
Acta Biomater. 2024 Dec;190:107-119. doi: 10.1016/j.actbio.2024.10.015. Epub 2024 Oct 11.
Multifunctional robust protective coatings that combine biocompatibility, antifouling and antimicrobial properties play an essential role in reducing host reactions and infection on invasive medical devices. However, developing these protective coatings generally faces a paradox: coating materials capable of achieving robust adhesion to substrates via spontaneous deposition inevitably initiate continuous biofoulant adsorption, while those employing strong hydration capability to resist biofoulant attachment have limited substrate binding ability and durability under wear. Herein, we designed a multifunctional terpolymer of poly(dopamine methyacrylamide-co-2-methacryloyloxyethyl phoasphorylcholine-co-2-(dimethylamino)-ethyl methacrylate) (P(DMA-co-MPC-co-DMAEMA)), which integrates desired yet traditionally incompatible functions (i.e., robust adhesion, antifouling, lubrication, and antimicrobial properties). Direct normal and lateral force measurements, dynamic adsorption tests, surface ion conductance mapping were applied to comprehensively investigate the nanomechanics of coating-biofloulant interactions. Catechol groups of DMA act as basal anchors for robust substrate deposition, while the highly hydrated zwitterion of MPC provides apical protection to resist biofouling and wear. Moreover, the antimicrobial property is conferred through the protonation of tertiary amine groups on DMAEMA, inhibiting infection under physiological conditions. This work provides an effective strategy for harmonizing demanded yet incompatible properties in one coating material, with significant implications for the development of multifunctional surfaces towards the advancement of invasive biomedical devices. STATEMENT OF SIGNIFICANCE: Multifunctional robust protective coatings have been widely utilized in invasive medical devices to mitigate host responses and infection. However, modified surface coatings often encounter a trade-off between robust adhesion to substrates and strong hydration capability for antifouling and antimicrobial properties. We propose a universal strategy for surface modification by dopamine-assisted co-deposition with a multifunctional terpolymer of P(DMA-co-MPC-co-DMAEMA) that simultaneously achieves robust adhesion, antifouling, and antimicrobial properties. Through elucidating the nanomechanics with fundamentally understanding the interactions between the coating and biomacromolecules, we highlight the role of DMA for substrate adhesion, MPC for biofouling resistance, and DMAEMA for antimicrobial activity. This approach presents a promising strategy for constructing multifunctional coatings on minimally invasive medical devices by tuning interfacial molecular asymmetricity to reconcile incompatible properties within one coating.
兼具生物相容性、防污和抗菌性能的多功能坚固防护涂层在减少侵入性医疗器械上的宿主反应和感染方面发挥着至关重要的作用。然而,开发这些防护涂层通常面临一个矛盾:能够通过自发沉积在基底上实现牢固粘附的涂层材料不可避免地会引发生物污垢的持续吸附,而那些利用强水合能力来抵抗生物污垢附着的材料在磨损情况下基底结合能力和耐久性有限。在此,我们设计了一种聚(多巴胺甲基丙烯酰胺 - 共 - 2 - 甲基丙烯酰氧基乙基磷酰胆碱 - 共 - 2 - (二甲氨基)乙基甲基丙烯酸酯)(P(DMA - 共 - MPC - 共 - DMAEMA))的多功能三元共聚物,它整合了所需但传统上不相容的功能(即牢固的粘附、防污、润滑和抗菌性能)。应用直接法向和侧向力测量、动态吸附测试、表面离子传导映射来全面研究涂层与生物污垢相互作用的纳米力学。DMA的儿茶酚基团作为基底沉积的基础锚定,而MPC高度水合的两性离子提供顶端保护以抵抗生物污垢和磨损。此外,抗菌性能是通过DMAEMA上叔胺基团的质子化赋予的,在生理条件下抑制感染。这项工作为在一种涂层材料中协调所需但不相容的性能提供了一种有效策略,对开发用于推进侵入性生物医学设备的多功能表面具有重要意义。重要性声明:多功能坚固防护涂层已广泛应用于侵入性医疗器械中以减轻宿主反应和感染。然而,改性表面涂层在与基底的牢固粘附以及用于防污和抗菌性能的强水合能力之间常常面临权衡。我们提出了一种通过多巴胺辅助与P(DMA - 共 - MPC - 共 - DMAEMA)多功能三元共聚物共沉积进行表面改性的通用策略,该策略同时实现了牢固的粘附、防污和抗菌性能。通过从根本上理解涂层与生物大分子之间的相互作用来阐明纳米力学,我们突出了DMA对基底粘附的作用、MPC对生物污垢抗性的作用以及DMAEMA对抗菌活性的作用。这种方法为通过调节界面分子不对称性在微创医疗器械上构建多功能涂层以协调一种涂层内不相容的性能提供了一种有前景的策略。