Suppr超能文献

α-氨基-β-羧基粘康酸-ε-半醛脱羧酶催化草酰乙酸的烯醇/酮互变异构。

α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase catalyzes enol/keto tautomerization of oxaloacetate.

作者信息

Yang Yu, Davis Ian, Altman Ryan A, Liu Aimin

机构信息

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China; Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA.

Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA.

出版信息

J Biol Chem. 2024 Nov;300(11):107878. doi: 10.1016/j.jbc.2024.107878. Epub 2024 Oct 11.

Abstract

ACMSD (α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase) is a key metalloenzyme critical for regulating de novo endogenous NAD/NADH biosynthesis through the tryptophan-kynurenine pathway. This decarboxylase is a recognized target implicated in mitochondrial diseases and neurodegenerative disorders. However, unraveling its enzyme-substrate complex has been challenging due to its high catalytic efficiency. Here, we present a combined biochemical and structural study wherein we determined the crystal structure of ACMSD in complex with malonate. Our analysis revealed significant rearrangements in the active site, particularly in residues crucial for ACMS decarboxylation, including Arg51, Arg239∗ (a residue from an adjacent subunit), His228, and Trp194. Docking modeling studies proposed a putative ACMS binding mode. Additionally, we found that ACMSD catalyzes oxaloacetic acid (OAA) tautomerization at a rate of 6.51 ± 0.42 s but not decarboxylation. The isomerase activity of ACMSD on OAA warrants further investigation in future biological studies. Subsequent mutagenesis studies and crystallographic analysis of the W194A variant shed light on the roles of specific second-coordination sphere residues. Our findings indicate that Arg51 and Arg239∗ are crucial for OAA tautomerization. Moreover, our comparative analysis with related isomerase superfamily members underscores a general strategy employing arginine residues to promote OAA isomerization. Given the observed isomerase activity of ACMSD on OAA and its structural similarity to ACMS, we propose that ACMSD may facilitate isomerization to ensure ACMS is in the optimal tautomeric form for subsequent decarboxylation initiated by the zinc-bound hydroxide ion. Overall, these findings deepen the understanding of the structure and function of ACMSD, offering insights into potential therapeutic interventions.

摘要

α-氨基-β-羧基粘康酸-ε-半醛脱羧酶(ACMSD)是一种关键的金属酶,对于通过色氨酸-犬尿氨酸途径调节从头合成内源性烟酰胺腺嘌呤二核苷酸/还原型烟酰胺腺嘌呤二核苷酸(NAD/NADH)至关重要。这种脱羧酶是线粒体疾病和神经退行性疾病中公认的靶点。然而,由于其高催化效率,解析其酶-底物复合物一直具有挑战性。在此,我们展示了一项结合生化和结构研究,其中我们确定了与丙二酸结合的ACMSD的晶体结构。我们的分析揭示了活性位点的显著重排,特别是在对ACMS脱羧至关重要的残基中,包括精氨酸51、精氨酸239∗(来自相邻亚基的一个残基)、组氨酸228和色氨酸194。对接建模研究提出了一种假定的ACMS结合模式。此外,我们发现ACMSD以6.51±0.42 s的速率催化草酰乙酸(OAA)互变异构,但不催化脱羧反应。ACMSD对OAA的异构酶活性值得在未来的生物学研究中进一步探究。随后对W194A变体的诱变研究和晶体学分析揭示了特定第二配位层残基的作用。我们的研究结果表明,精氨酸51和精氨酸239∗对OAA互变异构至关重要。此外,我们与相关异构酶超家族成员的比较分析强调了利用精氨酸残基促进OAA异构化的一般策略。鉴于观察到的ACMSD对OAA的异构酶活性及其与ACMS的结构相似性,我们提出ACMSD可能促进异构化,以确保ACMS处于由锌结合的氢氧根离子引发的后续脱羧的最佳互变异构形式。总体而言,这些发现加深了对ACMSD结构和功能的理解,为潜在的治疗干预提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f514/11650718/1e33fdf170fb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验