Suppr超能文献

人类α-氨基-β-羧基粘康酸-ε-半醛脱羧酶(ACMSD):结构与机制的揭示

Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling.

作者信息

Huo Lu, Liu Fange, Iwaki Hiroaki, Li Tingfeng, Hasegawa Yoshie, Liu Aimin

机构信息

Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303.

出版信息

Proteins. 2015 Jan;83(1):178-87. doi: 10.1002/prot.24722. Epub 2014 Nov 21.

Abstract

Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase determines the fate of tryptophan metabolites in the kynurenine pathway by controlling the quinolinate levels for de novo nicotinamide adenine dinucleotide biosynthesis. The unstable nature of its substrate has made gaining insight into its reaction mechanism difficult. Our electron paramagnetic resonance (EPR) spectroscopic study on the Cu-substituted human enzyme suggests that the native substrate does not directly ligate to the metal ion. Substrate binding did not result in a change of either the hyperfine structure or the super-hyperfine structure of the EPR spectrum. We also determined the crystal structure of the human enzyme in its native catalytically active state (at 1.99 Å resolution), a substrate analogue-bound form (2.50 Å resolution), and a selected active site mutant form with one of the putative substrate binding residues altered (2.32 Å resolution). These structures illustrate that each asymmetric unit contains three pairs of dimers. Consistent with the EPR findings, the ligand-bound complex structure shows that the substrate analogue does not directly coordinate to the metal ion but is bound to the active site by two arginine residues through noncovalent interactions.

摘要

人类α-氨基-β-羧基粘康酸-ε-半醛脱羧酶通过控制用于从头合成烟酰胺腺嘌呤二核苷酸的喹啉酸水平,决定了色氨酸代谢物在犬尿氨酸途径中的命运。其底物的不稳定性质使得深入了解其反应机制变得困难。我们对铜取代的人类酶进行的电子顺磁共振(EPR)光谱研究表明,天然底物不会直接与金属离子结合。底物结合并未导致EPR光谱的超精细结构或超超精细结构发生变化。我们还确定了处于天然催化活性状态(分辨率为1.99 Å)、底物类似物结合形式(分辨率为2.50 Å)以及一个推定的底物结合残基之一发生改变的选定活性位点突变体形式(分辨率为2.32 Å)的人类酶的晶体结构。这些结构表明,每个不对称单元包含三对二聚体。与EPR研究结果一致,配体结合的复合物结构表明,底物类似物不会直接与金属离子配位,而是通过两个精氨酸残基通过非共价相互作用结合到活性位点。

相似文献

1
Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling.
Proteins. 2015 Jan;83(1):178-87. doi: 10.1002/prot.24722. Epub 2014 Nov 21.
2
Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase.
Biochemistry. 2012 Jul 24;51(29):5811-21. doi: 10.1021/bi300635b. Epub 2012 Jul 12.
3
Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity.
J Biol Chem. 2019 Jul 26;294(30):11609-11621. doi: 10.1074/jbc.RA119.009035. Epub 2019 Jun 12.
4
α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase catalyzes enol/keto tautomerization of oxaloacetate.
J Biol Chem. 2024 Nov;300(11):107878. doi: 10.1016/j.jbc.2024.107878. Epub 2024 Oct 11.
6
Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide.
Acta Crystallogr F Struct Biol Commun. 2025 Mar 1;81(Pt 3):108-117. doi: 10.1107/S2053230X25000858. Epub 2025 Feb 17.
8
Structural and functional insights into the substrate specificity of the pseudouridine monophosphate phosphatase HDHD1A.
J Biol Chem. 2025 Jun;301(6):110257. doi: 10.1016/j.jbc.2025.110257. Epub 2025 May 21.
10
Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.
Cochrane Database Syst Rev. 2016 Apr 21;4(4):CD009016. doi: 10.1002/14651858.CD009016.pub2.

引用本文的文献

1
α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase catalyzes enol/keto tautomerization of oxaloacetate.
J Biol Chem. 2024 Nov;300(11):107878. doi: 10.1016/j.jbc.2024.107878. Epub 2024 Oct 11.
2
Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes.
Curr Opin Chem Biol. 2023 Aug;75:102332. doi: 10.1016/j.cbpa.2023.102332. Epub 2023 Jun 1.
3
Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan.
Metabolites. 2023 Mar 30;13(4):500. doi: 10.3390/metabo13040500.
4
Structural Basis of Human Dimeric α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase Inhibition With TES-1025.
Front Mol Biosci. 2022 Apr 7;9:834700. doi: 10.3389/fmolb.2022.834700. eCollection 2022.
6
Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway.
J Med Chem. 2021 Jan 14;64(1):797-811. doi: 10.1021/acs.jmedchem.0c01762. Epub 2020 Dec 28.
7
Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19720-19730. doi: 10.1073/pnas.2005327117. Epub 2020 Jul 30.
8
Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity.
J Biol Chem. 2019 Jul 26;294(30):11609-11621. doi: 10.1074/jbc.RA119.009035. Epub 2019 Jun 12.
9
Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism.
J Biol Chem. 2018 Jun 22;293(25):9594-9603. doi: 10.1074/jbc.RA118.003320. Epub 2018 Apr 27.
10
Is the Enzyme ACMSD a Novel Therapeutic Target in Parkinson's Disease?
J Parkinsons Dis. 2017;7(4):577-587. doi: 10.3233/JPD-171240.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Increased serum levels of quinolinic acid indicate enhanced severity of hepatic dysfunction in patients with liver cirrhosis.
Hum Immunol. 2013 Jan;74(1):60-6. doi: 10.1016/j.humimm.2012.09.009. Epub 2012 Oct 6.
5
Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase.
Biochemistry. 2012 Jul 24;51(29):5811-21. doi: 10.1021/bi300635b. Epub 2012 Jul 12.
6
Structure and catalytic mechanism of LigI: insight into the amidohydrolase enzymes of cog3618 and lignin degradation.
Biochemistry. 2012 Apr 24;51(16):3497-507. doi: 10.1021/bi300307b. Epub 2012 Apr 9.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
10
Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington's disease.
Prog Neurobiol. 2010 Feb 9;90(2):230-45. doi: 10.1016/j.pneurobio.2009.04.005. Epub 2009 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验