Chen Jiajun, Shi Jianping, He Ao, Fang Hui
Department of Mathematics, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People's Republic of China.
Sci Rep. 2024 Oct 12;14(1):23874. doi: 10.1038/s41598-024-74600-4.
Physics informed neural network (PINN) demonstrates powerful capabilities in solving forward and inverse problems of nonlinear partial differential equations (NLPDEs) through combining data-driven and physical constraints. In this paper, two PINN methods that adopt tanh and sine as activation functions, respectively, are used to study data-driven solutions and parameter estimations of a family of high order KdV equations. Compared to the standard PINN with the tanh activation function, the PINN framework using the sine activation function can effectively learn the single soliton solution, double soliton solution, periodic traveling wave solution, and kink solution of the proposed equations with higher precision. The PINN framework using the sine activation function shows better performance in parameter estimation. In addition, the experiments show that the complexity of the equation influences the accuracy and efficiency of the PINN method. The outcomes of this study are poised to enhance the application of deep learning techniques in solving solutions and modeling of higher-order NLPDEs.
物理信息神经网络(PINN)通过结合数据驱动和物理约束,在解决非线性偏微分方程(NLPDEs)的正向和反向问题方面展现出强大的能力。本文分别采用双曲正切函数和正弦函数作为激活函数的两种PINN方法,用于研究一类高阶KdV方程的数据驱动解和参数估计。与使用双曲正切激活函数的标准PINN相比,使用正弦激活函数的PINN框架能够以更高的精度有效地学习所提出方程的单孤子解、双孤子解、周期行波解和扭结解。使用正弦激活函数的PINN框架在参数估计方面表现出更好的性能。此外,实验表明方程的复杂性会影响PINN方法的准确性和效率。本研究的结果有望加强深度学习技术在求解高阶NLPDEs的解和建模中的应用。