Suppr超能文献

基于物理信息神经网络的一类高阶KdV方程的数据驱动解决方案与参数估计

Data-driven solutions and parameter estimations of a family of higher-order KdV equations based on physics informed neural networks.

作者信息

Chen Jiajun, Shi Jianping, He Ao, Fang Hui

机构信息

Department of Mathematics, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People's Republic of China.

出版信息

Sci Rep. 2024 Oct 12;14(1):23874. doi: 10.1038/s41598-024-74600-4.

Abstract

Physics informed neural network (PINN) demonstrates powerful capabilities in solving forward and inverse problems of nonlinear partial differential equations (NLPDEs) through combining data-driven and physical constraints. In this paper, two PINN methods that adopt tanh and sine as activation functions, respectively, are used to study data-driven solutions and parameter estimations of a family of high order KdV equations. Compared to the standard PINN with the tanh activation function, the PINN framework using the sine activation function can effectively learn the single soliton solution, double soliton solution, periodic traveling wave solution, and kink solution of the proposed equations with higher precision. The PINN framework using the sine activation function shows better performance in parameter estimation. In addition, the experiments show that the complexity of the equation influences the accuracy and efficiency of the PINN method. The outcomes of this study are poised to enhance the application of deep learning techniques in solving solutions and modeling of higher-order NLPDEs.

摘要

物理信息神经网络(PINN)通过结合数据驱动和物理约束,在解决非线性偏微分方程(NLPDEs)的正向和反向问题方面展现出强大的能力。本文分别采用双曲正切函数和正弦函数作为激活函数的两种PINN方法,用于研究一类高阶KdV方程的数据驱动解和参数估计。与使用双曲正切激活函数的标准PINN相比,使用正弦激活函数的PINN框架能够以更高的精度有效地学习所提出方程的单孤子解、双孤子解、周期行波解和扭结解。使用正弦激活函数的PINN框架在参数估计方面表现出更好的性能。此外,实验表明方程的复杂性会影响PINN方法的准确性和效率。本研究的结果有望加强深度学习技术在求解高阶NLPDEs的解和建模中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a324/11470932/8e2c21e261bd/41598_2024_74600_Fig1_HTML.jpg

相似文献

2
Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15588-15603. doi: 10.1109/TPAMI.2023.3307688. Epub 2023 Nov 3.
3
The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
Comput Intell Neurosci. 2021 Nov 26;2021:8548482. doi: 10.1155/2021/8548482. eCollection 2021.
4
Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
Math Biosci Eng. 2022 Sep 5;19(12):12866-12896. doi: 10.3934/mbe.2022601.
5
A Novel Hybrid Deep Learning Method for Predicting the Flow Fields of Biomimetic Flapping Wings.
Biomimetics (Basel). 2024 Jan 25;9(2):0. doi: 10.3390/biomimetics9020072.
6
Quantifying local and global mass balance errors in physics-informed neural networks.
Sci Rep. 2024 Jul 5;14(1):15541. doi: 10.1038/s41598-024-65472-9.
8
Recipes for when physics fails: recovering robust learning of physics informed neural networks.
Mach Learn Sci Technol. 2023 Mar 1;4(1):015013. doi: 10.1088/2632-2153/acb416. Epub 2023 Feb 6.
9
Negative-order Korteweg-de Vries equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016601. doi: 10.1103/PhysRevE.86.016601. Epub 2012 Jul 3.
10
Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks.
Sensors (Basel). 2023 Oct 24;23(21):8665. doi: 10.3390/s23218665.

本文引用的文献

2
Conservation laws, solitary wave solutions, and lie analysis for the nonlinear chains of atoms.
Sci Rep. 2023 Jul 17;13(1):11537. doi: 10.1038/s41598-023-38658-w.
3
Electron-acoustic solitary potential in nonextensive streaming plasma.
Sci Rep. 2022 Sep 7;12(1):15175. doi: 10.1038/s41598-022-19206-4.
4
Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation.
J Adv Res. 2021 Oct 13;38:131-142. doi: 10.1016/j.jare.2021.09.015. eCollection 2022 May.
5
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
6
Artificial neural networks for solving ordinary and partial differential equations.
IEEE Trans Neural Netw. 1998;9(5):987-1000. doi: 10.1109/72.712178.
7
Finite-element neural networks for solving differential equations.
IEEE Trans Neural Netw. 2005 Nov;16(6):1381-92. doi: 10.1109/TNN.2005.857945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验