Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
INRAE, ENVT, IHAP, Toulouse, France.
FEBS J. 2024 Nov;291(22):5051-5076. doi: 10.1111/febs.17291. Epub 2024 Oct 13.
Mammalian prions are neurotropic pathogens formed from PrP assemblies, a misfolded variant of the host-encoded prion protein PrP. Multiple PrP conformations or strains self-propagate in host populations or mouse models of prion diseases, exhibiting distinct biological and biochemical phenotypes. Constrained interactions between PrP and PrP conformations confer species specificity and regulate cross-species transmission. The pathogenicity of fibrillar assemblies derived from bacterially expressed recombinant PrP (rPrP) has been instrumental in demonstrating the protein-only nature of prions. Yet, their ability to encode different strains and transmit between species remains poorly studied, hampering their use in exploring structure-to-strain relationships. Fibrillar assemblies from rPrP with hamster, mouse, human, and bovine primary structures were generated and tested for transmission and adaptation in tg7 transgenic mice expressing hamster PrP. All assemblies, except the bovine ones, were fully pathogenic on the primary passage, causing clinical disease, PrP brain deposition, and spongiform degeneration. They exhibited divergent adaptation processes and strain properties upon subsequent passage. Assemblies of hamster origin propagated without apparent need for adaptation, those of mouse origin adapted abruptly, and those of human origin required serial passages for optimal fitness. Molecular analyses revealed the presence of endogenously truncated PrP species in the resulting synthetic strains that lack the 90-140 amino acid region considered crucial for infectivity. In conclusion, rPrP assemblies provide a facile means of generating novel prion strains with adaptative/evolutive properties mimicking genuine prions. The PrP amino acid backbone is sufficient to encode different strains with specific adaptative properties, offering insights into prion transmission and strain diversity.
哺乳动物朊病毒是由 PrP 组装体形成的神经毒性病原体,PrP 是宿主编码的朊病毒蛋白 PrP 的错误折叠变体。多种 PrP 构象或株系在宿主群体或朊病毒病的小鼠模型中自我传播,表现出不同的生物学和生物化学表型。PrP 与 PrP 构象之间的约束相互作用赋予了物种特异性,并调节了种间传播。从细菌表达的重组 PrP(rPrP)衍生的纤维状组装体的致病性对于证明朊病毒的蛋白质性质至关重要。然而,它们在种间传播和编码不同株系的能力仍然研究不足,这阻碍了它们在探索结构与株系关系方面的应用。生成了具有仓鼠、小鼠、人类和牛初级结构的 rPrP 纤维状组装体,并在表达仓鼠 PrP 的 tg7 转基因小鼠中测试了它们的传播和适应能力。除了牛的组装体外,所有组装体在原发性传递中都具有完全的致病性,导致临床疾病、PrP 脑沉积和海绵状变性。它们在随后的传递中表现出不同的适应过程和株系特性。源自仓鼠的组装体没有明显的适应需要就能繁殖,源自小鼠的组装体突然适应,而源自人类的组装体则需要连续传递才能达到最佳适应性。分子分析显示,在缺乏被认为对感染性至关重要的 90-140 个氨基酸区域的情况下,产生的合成株系中存在内源性截短的 PrP 物种。总之,rPrP 组装体为生成具有类似于真正朊病毒的适应性/进化特性的新型朊病毒株系提供了一种简便的方法。PrP 氨基酸骨架足以编码具有特定适应性特性的不同株系,为朊病毒的传播和株系多样性提供了深入了解。